cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139221 Numbers k such that both 41+(k+k^2)/2 and 41+(k+k^2) are primes.

Original entry on oeis.org

0, 3, 11, 20, 23, 27, 32, 39, 48, 51, 59, 60, 83, 108, 111, 116, 128, 132, 135, 171, 188, 203, 212, 227, 240, 263, 275, 315, 324, 356, 359, 363, 384, 392, 447, 476, 479, 515, 528, 588, 627, 647, 648, 672, 731, 759, 780, 804, 839, 864, 875, 900, 903, 968, 975
Offset: 1

Views

Author

Zak Seidov, Apr 11 2008

Keywords

Comments

Intersection of A139220 and A056561.

Examples

			If k = 11 then 41 + (k + k^2) / 2 = 107 (prime) and 41 + (k + k^2) = 173 (prime).
		

Crossrefs

Programs

  • Magma
    [k:k in [0..1000]| IsPrime(41+(k+k^2) div 2) and IsPrime(41+k+k^2)]; // Marius A. Burtea, Feb 12 2020
    
  • Mathematica
    Select[Table[Range[0,2000]],PrimeQ[41+(#+#^2)/2]&&PrimeQ[41+#+#^2]&]
    Select[Range[0,1000],AllTrue[41+{(#+#^2)/2,#+#^2},PrimeQ]&] (* Harvey P. Dale, May 21 2024 *)
  • PARI
    for(n=0, 1000, if(isprime(binomial(n+1,2) +41) && isprime(n^2+n+41), print1(n", "))) \\ G. C. Greubel, Feb 12 2020
    
  • Sage
    [n for n in (0..1000) if is_prime(binomial(n+1,2)+41) and is_prime(n^2+n+41)] # G. C. Greubel, Feb 12 2020