A139263 Number of two element anti-chains in Riordan trees on n edges (also called non-redundant trees, i.e., ordered trees where no vertex has out-degree equal to 1).
0, 0, 1, 3, 14, 48, 172, 580, 1941, 6373, 20725, 66763, 213575, 679141, 2148948, 6771068, 21257741, 66529077, 207639925, 646480555, 2008458669, 6227766899, 19277394308, 59577651108, 183865477474, 566700165898, 1744578701517, 5364804428455, 16480883532586, 50582859417868, 155114365434224
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2093
- Lifoma Salaam, Combinatorial statistics on phylogenetic trees, Ph.D. Dissertation, Howard University, Washington D.C., 2008; see p. 40.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 35); [0,0] cat Coefficients(R!( (1 -x -Sqrt(1-2*x-3*x^2))*Sqrt(1-2*x-3*x^2)/(2*(1+x)*(1-2*x-3*x^2)^2) )); // G. C. Greubel, Jun 02 2020 -
Maple
a:= proc(n) option remember; `if`(n<4, [0$2, 1, 3][n+1], ((4*n-3)*(n-2)*a(n-1)+(2*n+9)*(n-2)*a(n-2)-3* (4*n-9)*n*a(n-3)-9*(n-1)*n*a(n-4))/(n*(n-2))) end: seq(a(n), n=0..30); # Alois P. Heinz, Jun 02 2020
-
Mathematica
CoefficientList[Series[(1 -x -Sqrt[1-2*x-3*x^2])*Sqrt[1-2*x-3*x^2]/(2*(1+x)*(1 - 2*x-3*x^2)^2), {x, 0, 35}], x] (* G. C. Greubel, Jun 02 2020 *)
-
PARI
default(seriesprecision, 50) f(x) = 1/sqrt(1-2*x-3*x^2); r(x) = (1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)); a(n) = polcoef(x^2*r(x)^2*f(x)^3, n, x); for(n=0, 30, print1(a(n), ",")) \\ Petros Hadjicostas, Jun 02 2020
-
Sage
r(x)=(1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)) m(x)=(1-x-sqrt(1-2*x-3*x^2))/(2*x^2) g(x)=derivative(x*r(x),x) a(x)=x^2*(x*m(x)+1)^3*g(x)^3/r(x) taylor(a(x),x,0,30).list() # Petros Hadjicostas, Jun 02 2020
Formula
G.f.: A(x) = x^2 * (x*M(x) + 1)^3 * (d(x*R(x))/dx)^3/R(x), where M is the generating function for the Motzkin numbers and R is the generating function for the Riordan numbers.
From Petros Hadjicostas, Jun 02 2020: (Start)
Here R(x) = (1 + x - sqrt(1 - 2*x - 3*x^2))/(2*x*(1-x)) = g.f. of A005043 and M(x) = (1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2) = g.f. of A001006.
If we let s(x) = sqrt(1 - 2*x - 3*x^2), then A(x) = x^2*((1 + x - s(x))/(2*x*(1 + x)))^2/s(x)^3 (see p. 40 in Salaam (2008)).
Alternatively, we may write A(x) = x^2 * R(x)^2 * B(x), where B(x) = g.f. of (A102839(n+1): n >= 0). (End)
Extensions
a(10)-a(30) from Petros Hadjicostas, Jun 02 2020