cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139263 Number of two element anti-chains in Riordan trees on n edges (also called non-redundant trees, i.e., ordered trees where no vertex has out-degree equal to 1).

Original entry on oeis.org

0, 0, 1, 3, 14, 48, 172, 580, 1941, 6373, 20725, 66763, 213575, 679141, 2148948, 6771068, 21257741, 66529077, 207639925, 646480555, 2008458669, 6227766899, 19277394308, 59577651108, 183865477474, 566700165898, 1744578701517, 5364804428455, 16480883532586, 50582859417868, 155114365434224
Offset: 0

Views

Author

Lifoma Salaam, Apr 12 2008

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 35); [0,0] cat Coefficients(R!( (1 -x -Sqrt(1-2*x-3*x^2))*Sqrt(1-2*x-3*x^2)/(2*(1+x)*(1-2*x-3*x^2)^2) )); // G. C. Greubel, Jun 02 2020
  • Maple
    a:= proc(n) option remember; `if`(n<4, [0$2, 1, 3][n+1],
          ((4*n-3)*(n-2)*a(n-1)+(2*n+9)*(n-2)*a(n-2)-3*
           (4*n-9)*n*a(n-3)-9*(n-1)*n*a(n-4))/(n*(n-2)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 02 2020
  • Mathematica
    CoefficientList[Series[(1 -x -Sqrt[1-2*x-3*x^2])*Sqrt[1-2*x-3*x^2]/(2*(1+x)*(1 - 2*x-3*x^2)^2), {x, 0, 35}], x] (* G. C. Greubel, Jun 02 2020 *)
  • PARI
    default(seriesprecision, 50)
    f(x) = 1/sqrt(1-2*x-3*x^2);
    r(x) = (1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x));
    a(n) = polcoef(x^2*r(x)^2*f(x)^3, n, x);
    for(n=0, 30, print1(a(n), ",")) \\ Petros Hadjicostas, Jun 02 2020
    
  • Sage
    r(x)=(1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x))
    m(x)=(1-x-sqrt(1-2*x-3*x^2))/(2*x^2)
    g(x)=derivative(x*r(x),x)
    a(x)=x^2*(x*m(x)+1)^3*g(x)^3/r(x)
    taylor(a(x),x,0,30).list() # Petros Hadjicostas, Jun 02 2020
    

Formula

G.f.: A(x) = x^2 * (x*M(x) + 1)^3 * (d(x*R(x))/dx)^3/R(x), where M is the generating function for the Motzkin numbers and R is the generating function for the Riordan numbers.
From Petros Hadjicostas, Jun 02 2020: (Start)
Here R(x) = (1 + x - sqrt(1 - 2*x - 3*x^2))/(2*x*(1-x)) = g.f. of A005043 and M(x) = (1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2) = g.f. of A001006.
If we let s(x) = sqrt(1 - 2*x - 3*x^2), then A(x) = x^2*((1 + x - s(x))/(2*x*(1 + x)))^2/s(x)^3 (see p. 40 in Salaam (2008)).
Alternatively, we may write A(x) = x^2 * R(x)^2 * B(x), where B(x) = g.f. of (A102839(n+1): n >= 0). (End)

Extensions

a(10)-a(30) from Petros Hadjicostas, Jun 02 2020