A139267 Twice octagonal numbers: 2*n*(3*n-2).
0, 2, 16, 42, 80, 130, 192, 266, 352, 450, 560, 682, 816, 962, 1120, 1290, 1472, 1666, 1872, 2090, 2320, 2562, 2816, 3082, 3360, 3650, 3952, 4266, 4592, 4930, 5280, 5642, 6016, 6402, 6800, 7210, 7632, 8066, 8512, 8970, 9440, 9922
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50], n-> 2*n*(3*n-2)); # G. C. Greubel, Sep 18 2019
-
Magma
[2*n*(3*n-2): n in [0..50]]; // G. C. Greubel, Sep 18 2019
-
Maple
seq(2*n*(3*n-2), n=0..50); # G. C. Greubel, Sep 18 2019
-
Mathematica
Table[2*n*(3*n-2), {n,0,50}] (* G. C. Greubel, Jun 07 2017 *)
-
PARI
a(n)=2*n*(3*n-2) \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[2*n*(3*n-2) for n in (0..50)] # G. C. Greubel, Sep 18 2019
Formula
a(n) = 2*A000567(n) = 6*n^2 - 4*n = 2*n*(3*n - 2).
a(n) = a(n-1) + 12*n - 10, with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: x*(2+10*x)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 06 2012
After 0, a(n) = Sum_{i=0..n-1} (12*i + 2). - Bruno Berselli, Sep 11 2013
E.g.f.: 2*x*(1 + 3*x)*exp(x). - G. C. Greubel, Sep 18 2019
Comments