A139339 Decimal expansion of the square root of the golden ratio.
1, 2, 7, 2, 0, 1, 9, 6, 4, 9, 5, 1, 4, 0, 6, 8, 9, 6, 4, 2, 5, 2, 4, 2, 2, 4, 6, 1, 7, 3, 7, 4, 9, 1, 4, 9, 1, 7, 1, 5, 6, 0, 8, 0, 4, 1, 8, 4, 0, 0, 9, 6, 2, 4, 8, 6, 1, 6, 6, 4, 0, 3, 8, 2, 5, 3, 9, 2, 9, 7, 5, 7, 5, 5, 3, 6, 0, 6, 8, 0, 1, 1, 8, 3, 0, 3, 8, 4, 2, 1, 4, 9, 8, 8, 4, 6, 0, 2, 5, 8, 5, 3, 8, 5, 1
Offset: 1
Examples
1.2720196495140689642524224617374914917156080418400...
References
- B. Muslu, Sayılar ve Bağlantılar 2, Luna, 2021, pages 45-48.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Mohammad K. Azarian, Problem 123, Missouri Journal of Mathematical Sciences, Vol. 10, No. 3 (Fall 1998), p. 176. Solution published in Vol. 12, No. 1 (Winter 2000), pp. 61-62.
- Duane W. DeTemple, The Triangle of Smallest Perimeter which Circumscribes a Semicircle, The Fibonacci Quarterly, Vol. 30, No. 3 (1992), p. 274.
- Index entries for algebraic numbers, degree 4.
Crossrefs
Programs
-
Maple
Digits:=100: evalf(sqrt((1+sqrt(5))/2)); # Muniru A Asiru, Sep 11 2018
-
Mathematica
N[Sqrt[GoldenRatio], 100] FindRoot[x*Sqrt[-1 + x^2] == 1, {x, 1.2, 1.3}, WorkingPrecision -> 110] Plot[{Sqrt[-1 + x^2], 1/x}, {x, 0, 3}] (* Clark Kimberling, Oct 19 2011 *)
-
PARI
sqrt((1+sqrt(5))/2) \\ Charles R Greathouse IV, Jan 07 2013
-
PARI
a(n) = sqrtint(10^(2*n-2)*quadgen(5))%10; \\ Chittaranjan Pardeshi, Aug 24 2024
Formula
Equals sqrt((1 + sqrt(5))/2).
Equals 1/sqrt(A094214). - Burak Muslu, Apr 04 2021
From Amiram Eldar, Feb 07 2022: (Start)
Equals 1/A197762.
Equals tan(arccos(1/phi)).
Equals cot(arcsin(1/phi)). (End)
From Gerry Martens, Jul 30 2023: (Start)
Equals 5^(1/4)*cos(arctan(2)/2).
Equals Re(sqrt(1+2*i)) (the imaginary part is A197762). (End)
Comments