cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139339 Decimal expansion of the square root of the golden ratio.

Original entry on oeis.org

1, 2, 7, 2, 0, 1, 9, 6, 4, 9, 5, 1, 4, 0, 6, 8, 9, 6, 4, 2, 5, 2, 4, 2, 2, 4, 6, 1, 7, 3, 7, 4, 9, 1, 4, 9, 1, 7, 1, 5, 6, 0, 8, 0, 4, 1, 8, 4, 0, 0, 9, 6, 2, 4, 8, 6, 1, 6, 6, 4, 0, 3, 8, 2, 5, 3, 9, 2, 9, 7, 5, 7, 5, 5, 3, 6, 0, 6, 8, 0, 1, 1, 8, 3, 0, 3, 8, 4, 2, 1, 4, 9, 8, 8, 4, 6, 0, 2, 5, 8, 5, 3, 8, 5, 1
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 14 2008

Keywords

Comments

The hyperbolas x^2 - y^2 = 1 and xy = 1 meet at (c, 1/c) and (-c, -1/c), where c = sqrt(golden ratio); see the Mathematica program for a graph. - Clark Kimberling, Oct 19 2011
An algebraic integer of degree 4. Minimal polynomial: x^4 - x^2 - 1. - Charles R Greathouse IV, Jan 07 2013
Also the limiting value of the ratio of the slopes of the tangents drawn to the function y=sqrt(x) from the abscissa F(n) points (where F(n)=A000045(n) are the Fibonacci numbers and n > 0). - Burak Muslu, Apr 04 2021
The length of the base of the isosceles triangle of smallest perimeter which circumscribes a unit-diameter semicircle (DeTemple, 1992). - Amiram Eldar, Jan 22 2022
The unique real solution to arcsec(x) = arccot(x). - Wolfe Padawer, Apr 14 2023

Examples

			1.2720196495140689642524224617374914917156080418400...
		

References

  • B. Muslu, Sayılar ve Bağlantılar 2, Luna, 2021, pages 45-48.

Crossrefs

Cf. A000045, A001622, A094214, A104457, A098317, A002390; A197762 (related intersection of hyperbolas).

Programs

  • Maple
    Digits:=100: evalf(sqrt((1+sqrt(5))/2)); # Muniru A Asiru, Sep 11 2018
  • Mathematica
    N[Sqrt[GoldenRatio], 100]
    FindRoot[x*Sqrt[-1 + x^2] == 1, {x, 1.2, 1.3}, WorkingPrecision -> 110]
    Plot[{Sqrt[-1 + x^2], 1/x}, {x, 0, 3}] (* Clark Kimberling, Oct 19 2011 *)
  • PARI
    sqrt((1+sqrt(5))/2) \\ Charles R Greathouse IV, Jan 07 2013
    
  • PARI
    a(n) = sqrtint(10^(2*n-2)*quadgen(5))%10; \\ Chittaranjan Pardeshi, Aug 24 2024

Formula

Equals sqrt((1 + sqrt(5))/2).
Equals 1/sqrt(A094214). - Burak Muslu, Apr 04 2021
From Amiram Eldar, Feb 07 2022: (Start)
Equals 1/A197762.
Equals tan(arccos(1/phi)).
Equals cot(arcsin(1/phi)). (End)
From Gerry Martens, Jul 30 2023: (Start)
Equals 5^(1/4)*cos(arctan(2)/2).
Equals Re(sqrt(1+2*i)) (the imaginary part is A197762). (End)