A139383 Number of n-level labeled rooted trees with n leaves.
1, 1, 2, 12, 154, 3455, 120196, 5995892, 406005804, 35839643175, 3998289746065, 550054365477936, 91478394767427823, 18091315306315315610, 4196205472500769304318, 1128136777063831105273242, 347994813261017613045578964, 122080313159891715442898099217
Offset: 0
Keywords
Examples
If we form a table from the family of sequences defined by: number of k-level labeled rooted trees with n leaves, then this sequence equals the diagonal in that table: n=1:A000012=[1,1,1,1,1,1,1,1,1,1,...]; n=2:A000110=[1,2,5,15,52,203,877,4140,21147,115975,...]; n=3:A000258=[1,3,12,60,358,2471,19302,167894,1606137,...]; n=4:A000307=[1,4,22,154,1304,12915,146115,1855570,26097835,...]; n=5:A000357=[1,5,35,315,3455,44590,660665,11035095,204904830,...]; n=6:A000405=[1,6,51,561,7556,120196,2201856,45592666,1051951026,...]; n=7:A001669=[1,7,70,910,14532,274778,5995892,148154860,4085619622,...]; n=8:A081624=[1,8,92,1380,25488,558426,14140722,406005804,13024655442,...]; n=9:A081629=[1,9,117,1989,41709,1038975,29947185,979687005,35839643175,..]. Row n in the above table equals column 0 of matrix power A008277^n where A008277 = triangle of Stirling numbers of 2nd kind: 1; 1,1; 1,3,1; 1,7,6,1; 1,15,25,10,1; 1,31,90,65,15,1; ... The name of this sequence is a generalization of the definition given in the above sequences by _Christian G. Bower_.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..247
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0 or k=0, 1, add(binomial(n-1, j-1)*A(j, k-1)*A(n-j, k), j=1..n)) end: a:= n-> A(n, n-1): seq(a(n), n=0..20); # Alois P. Heinz, Aug 14 2015 # second Maple program: g:= x-> exp(x)-1: a:= n-> n! * coeff(series(1+(g@@n)(x), x, n+1), x, n): seq(a(n), n=0..20); # Alois P. Heinz, Jul 31 2017 # third Maple program: b:= proc(n, t, m) option remember; `if`(t=0, `if`(n<2, 1, 0), `if`(n=0, b(m, t-1, 0), m*b(n-1, t, m)+b(n-1, t, m+1))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..20); # Alois P. Heinz, Aug 04 2021
-
Mathematica
t[n_,m_]:=t[n,m] = If[m==1,1,Sum[StirlingS2[n,k]*t[k,m-1],{k,1,n}]]; Table[t[n,n],{n,1,20}] (* Vaclav Kotesovec, Aug 14 2015 after Vladimir Kruchinin *)
-
Maxima
T(n,m):=if m=1 then 1 else sum(stirling2(n,i)*T(i,m-1),i,1,n); makelist(T(n,n),n,1,7); /* Vladimir Kruchinin, May 19 2012 */
-
PARI
{a(n)=local(E=exp(x+x*O(x^n))-1,F=x); for(i=1,n,F=subst(F,x,E));n!*polcoeff(F,n)}
-
Python
from sympy.core.cache import cacheit from sympy import binomial @cacheit def A(n, k): return 1 if n==0 or k==0 else sum(binomial(n - 1, j - 1)*A(j, k - 1)*A(n - j, k) for j in range(1, n + 1)) def a(n): return A(n, n - 1) print([a(n) for n in range(21)]) # Indranil Ghosh, Aug 07 2017, after Maple code
Formula
a(n) = T(n,n), T(n,m) = Sum_{i=1..n} Stirling2(n,i)*T(i,m-1), m>1, T(n,1)=1. - Vladimir Kruchinin, May 19 2012
a(n) = n! * [x^n] 1 + g^n(x), where g(x) = exp(x)-1. - Alois P. Heinz, Aug 14 2015
From Vaclav Kotesovec, Aug 14 2015: (Start)
Conjecture: a(n) ~ c * n^(2*n-5/6) / (2^(n-1) * exp(n)), where c = 2.86539...
a(n) ~ exp(-1) * A261280(n).
(End)
Extensions
a(0)=1 prepended by Alois P. Heinz, Jul 31 2017
Comments