cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A144150 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where the e.g.f. of column k is 1+g^(k+1)(x) with g = x-> exp(x)-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 15, 1, 1, 1, 5, 22, 60, 52, 1, 1, 1, 6, 35, 154, 358, 203, 1, 1, 1, 7, 51, 315, 1304, 2471, 877, 1, 1, 1, 8, 70, 561, 3455, 12915, 19302, 4140, 1, 1, 1, 9, 92, 910, 7556, 44590, 146115, 167894, 21147, 1, 1, 1, 10, 117
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2008

Keywords

Comments

A(n,k) is also the number of (k+1)-level labeled rooted trees with n leaves.
Number of ways to start with set {1,2,...,n} and then repeat k times: partition each set into subsets. - Alois P. Heinz, Aug 14 2015
Equivalently, A(n,k) is the number of length k+1 multichains from bottom to top in the set partition lattice of an n-set. - Geoffrey Critzer, Dec 05 2020

Examples

			Square array begins:
  1,  1,   1,    1,    1,    1,  ...
  1,  1,   1,    1,    1,    1,  ...
  1,  2,   3,    4,    5,    6,  ...
  1,  5,  12,   22,   35,   51,  ...
  1, 15,  60,  154,  315,  561,  ...
  1, 52, 358, 1304, 3455, 7556,  ...
		

Crossrefs

Rows n=0+1, 2-5 give: A000012, A000027, A000326, A005945, A005946.
First lower diagonal gives A139383.
First upper diagonal gives A346802.
Main diagonal gives A261280.

Programs

  • Maple
    g:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1
          else (n-1)! *add(p(k)*b(n-k)/(k-1)!/(n-k)!, k=1..n) fi
        end end:
    A:= (n,k)-> (g@@k)(1)(n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0 or k=0, 1,
          add(binomial(n-1, j-1)*A(j, k-1)*A(n-j, k), j=1..n))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Aug 14 2015
    # third Maple program:
    b:= proc(n, t, m) option remember; `if`(t=0, 1, `if`(n=0,
          b(m, t-1, 0), m*b(n-1, t, m)+b(n-1, t, m+1)))
        end:
    A:= (n, k)-> b(n, k, 0):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    g[k_] := g[k] = Nest[Function[x, E^x - 1], x, k]; a[n_, k_] := SeriesCoefficient[1 + g[k + 1], {x, 0, n}]*n!; Table[a[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2013 *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def A(n, k): return 1 if n==0 or k==0 else sum([binomial(n - 1, j - 1)*A(j, k - 1)*A(n - j, k) for j in range(1, n + 1)])
    for n in range(51): print([A(k, n - k) for k in range(n + 1)]) # Indranil Ghosh, Aug 07 2017

Formula

E.g.f. of column k: 1 + g^(k+1)(x) with g = x-> exp(x)-1.
Column k+1 is Stirling transform of column k.

A261280 Number of ways to start with set {1,2,...,n} and then repeat n times: partition each set into subsets.

Original entry on oeis.org

1, 1, 3, 22, 315, 7556, 274778, 14140722, 979687005, 87998832685, 9951699489061, 1384060090903535, 232230523534594676, 46265730933522733556, 10797461309089628151462, 2918087323005280354349508, 904185772556792011572372117, 318432010852077710049833537040
Offset: 0

Views

Author

Alois P. Heinz, Aug 14 2015

Keywords

Examples

			a(2) = 3: 12->12->12, 12->12->1|2, 12->1|2->1|2.
a(3) = 22: 123->123->123->123, 123->123->123->12|3, 123->123->123->1|23, 123->123->123->13|2, 123->123->123->1|2|3, 123->123->12|3->12|3, 123->123->12|3->1|2|3, 123->123->1|23->1|23, 123->123->1|23->1|2|3, 123->123->13|2->13|2, 123->123->13|2->1|2|3, 123->123->1|2|3->1|2|3, 123->12|3->12|3->12|3, 123->12|3->12|3->1|2|3, 123->12|3->1|2|3->1|2|3, 123->1|23->1|23->1|23, 123->1|23->1|23->1|2|3, 123->1|23->1|2|3->1|2|3, 123->13|2->13|2->13|2, 123->13|2->13|2->1|2|3, 123->13|2->1|2|3->1|2|3, 123->1|2|3->1|2|3->1|2|3.
		

Crossrefs

Main diagonal of A144150.

Programs

  • Maple
    g:= x-> exp(x)-1:
    egf:= k-> 1+(g@@(k+1))(x):
    a:= n-> n! * coeff(series(egf(n), x, n+1), x, n):
    seq(a(n), n=0..20);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0 or k=0, 1,
          add(binomial(n-1, j-1)*A(j, k-1)*A(n-j, k), j=1..n))
        end:
    a:= n-> A(n$2):
    seq(a(n), n=0..20);
    # third Maple program:
    b:= proc(n, t, m) option remember; `if`(t=0, 1, `if`(n=0,
          b(m, t-1, 0), m*b(n-1, t, m)+b(n-1, t, m+1)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    Clear[t]; t[n_, k_]:=t[n, k] = If[n==0 || k==0, 1, Sum[Binomial[n-1, j-1]*t[j, k-1]*t[n-j, k], {j, 1, n}]]; Table[t[n, n], {n, 0, 20}] (* Vaclav Kotesovec, Aug 14 2015 after Alois P. Heinz *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def A(n, k): return 1 if n==0 or k==0 else sum(binomial(n - 1, j - 1)*A(j, k - 1)*A(n - j, k) for j in range(1, n + 1))
    def a(n): return A(n, n)
    print([a(n) for n in range(21)]) # Indranil Ghosh, Aug 07 2017

Formula

a(n) = n! * [x^n] 1 + g^(k+1)(x), where g(x) = exp(x)-1.
From Vaclav Kotesovec, Aug 14 2015: (Start)
Conjecture: a(n) ~ c * n^(2*n-5/6) / (2^(n-1) * exp(n)), where c = 7.7889...
a(n) ~ exp(1) * A139383(n).
(End)

A290354 a(n) is the n-th term of the n-th Euler transform of the sequence with g.f. 1+x.

Original entry on oeis.org

1, 1, 2, 6, 30, 170, 1337, 12166, 133476, 1676364, 23970089, 383172262, 6783362586, 131697494825, 2783238819896, 63605879539200, 1563127601683456, 41107799958703376, 1151957989511106438, 34268629198432285436, 1078577860182473404134, 35809701458658690462644
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2017

Keywords

Comments

a(n) is also the number of unlabeled rooted trees with exactly n leaves, all in level n. a(3) = 6:
: o o o o o o
: | | | / \ / \ /|\
: o o o o o o o o o o
: | / \ /|\ | | ( ) | | | |
: o o o o o o o o o o o o o o
: /|\ ( ) | | | | ( ) | | | | | | |
: o o o o o o o o o o o o o o o o o o

Crossrefs

Main diagonal of A290353.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(
          add(b(d, k-1)*d, d=divisors(j))*b(n-j, k), j=1..n)/n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[b[d, k - 1]*d, {d, Divisors[j]}] b[n - j, k], {j, n}]/n]]; Table[b[n, n], {n, 0, 30}] (* Indranil Ghosh, Jul 30 2017, after Maple code *)

Formula

a(n) = A290353(n,n).
Conjecture: a(n) ~ c * 2^n * n^(n-4/3) / Pi^n, where c = 4.4923... - Vaclav Kotesovec, Aug 14 2017

A302358 a(n) = coefficient of x^n in the n-th iteration (n-fold self-composition) of e.g.f. -log(1 - x).

Original entry on oeis.org

1, 2, 15, 234, 6170, 245755, 13761937, 1030431500, 99399019626, 12003835242090, 1773907219147800, 314880916127332489, 66109411013740671200, 16204039283106534720952, 4585484528618722750937783, 1483746673734716952089913364, 544359300175753347889146067840
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 06 2018

Keywords

Examples

			The initial coefficients of successive iterations of e.g.f. A(x) = -log(1 - x) are as follows:
n = 1: 0, (1), 1,   2,    6,    24,  ... e.g.f. A(x)
n = 2: 0,  1, (2),  7,   35,   228,  ... e.g.f. A(A(x))
n = 3: 0,  1,  3, (15), 105,   947,  ... e.g.f. A(A(A(x)))
n = 4: 0,  1,  4,  26, (234), 2696,  ... e.g.f. A(A(A(A(x))))
n = 5: 0,  1,  5,  40,  440, (6170), ... e.g.f. A(A(A(A(A(x)))))
		

Crossrefs

Programs

  • Maple
    g:= x-> -log(1-x):
    a:= n-> n! * coeff(series((g@@n)(x), x, n+1), x, n):
    seq(a(n), n=1..19);  # Alois P. Heinz, Feb 11 2022
  • Mathematica
    Table[n! SeriesCoefficient[Nest[Function[x, -Log[1 - x]], x, n], {x, 0, n}], {n, 17}]
  • PARI
    T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
    a(n) = T(n, n); \\ Seiichi Manyama, Feb 11 2022

Formula

a(n) = T(n,n), T(n,k) = Sum_{j=1..n} |Stirling1(n,j)| * T(j,k-1), k>1, T(n,1) = (n-1)!. - Seiichi Manyama, Feb 11 2022

A351433 a(n) = n! * [x^n] 1/(1 + f^n(x)), where f(x) = exp(x) - 1.

Original entry on oeis.org

1, -1, 0, 0, -2, -75, -3334, -192864, -14443260, -1372372623, -162009663365, -23314158802286, -4022712394579207, -820399656345934444, -195326656416326556562, -53709209673236813446542, -16896296201917398543629108, -6030879950631118091070849321
Offset: 0

Views

Author

Seiichi Manyama, Feb 11 2022

Keywords

Crossrefs

Main diagonal of A351429.

Programs

  • Maple
    g:= x-> exp(x)-1:
    a:= n-> n! * coeff(series(1/(1+(g@@n)(x)), x, n+1), x, n):
    seq(a(n), n=0..22);  # Alois P. Heinz, Feb 11 2022
  • Mathematica
    T[n_, 0] := (-1)^n * n!; T[n_, k_] := T[n, k] = Sum[StirlingS2[n, j]*T[j, k - 1], {j, 0, n}]; a[n_] := T[n, n]; Array[a, 17, 0] (* Amiram Eldar, Feb 11 2022 *)
  • PARI
    T(n, k) = if(k==0, (-1)^n*n!, sum(j=0, n, stirling(n, j, 2)*T(j, k-1)));
    a(n) = T(n, n);

Formula

a(n) = T(n,n), T(n,k) = Sum_{j=0..n} Stirling2(n,j) * T(j,k-1), k>1, T(n,0) = (-1)^n * n!.

A346802 Number of ways to start with set {1,2,...,n} and then repeat (n+1) times: partition each set into subsets.

Original entry on oeis.org

1, 1, 4, 35, 561, 14532, 558426, 29947185, 2141867440, 197304236151, 22773405820375, 3221070321954212, 548135428211610344, 110514990079832223628, 26057791266228066121614, 7105134240266115177248187, 2218719629100693497237788887, 786736247267010426995743418575
Offset: 0

Views

Author

Alois P. Heinz, Aug 04 2021

Keywords

Comments

Also the number of (n+2)-level labeled rooted trees with n leaves.

Crossrefs

First upper diagonal of A144150.

Programs

  • Maple
    a:= n-> (g-> coeff(series(1+(g@@(n+2))(x), x, n+1), x, n)*n!)(x-> exp(x)-1):
    seq(a(n), n=0..20);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0 or k=0, 1,
          add(binomial(n-1, j-1)*A(j, k-1)*A(n-j, k), j=1..n))
        end:
    a:= n-> A(n, n+1):
    seq(a(n), n=0..20);
    # third Maple program:
    b:= proc(n, t, m) option remember; `if`(n=0, `if`(t=0, 1,
          b(m, t-1, 0)), m*b(n-1, t, m)+b(n-1, t, m+1))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, t_, m_] := b[n, t, m] = If[n == 0, If[t == 0, 1, b[m, t - 1, 0]], m*b[n - 1, t, m] + b[n - 1, t, m + 1]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 18 2023, after 3rd Maple program *)

Formula

a(n) = n! * [x^n] 1 + g^(n+2)(x), where g(x) = exp(x)-1.
a(n) = A144150(n,n+1).
Conjecture: a(n) ~ c * n^(2*n - 5/6) / (exp(n) * 2^n), where c = 42.345... - Vaclav Kotesovec, Aug 11 2021

A351424 a(n) = n! * [x^n] -log(1 - f^(n-1)(x)), where f(x) = log(1+x).

Original entry on oeis.org

1, 0, 3, -48, 1270, -50375, 2803829, -208616562, 20003317746, -2402323535658, 353219463307920, -62411008199372327, 13048469028962425266, -3186116313706825820802, 898478811755719496052919, -289795933163271680910773018, 106008143082108931457543700504
Offset: 1

Views

Author

Seiichi Manyama, Feb 11 2022

Keywords

Crossrefs

Main diagonal of A351420.

Programs

  • Maple
    g:= x-> log(1+x):
    a:= n-> n! * coeff(series(-log(1-(g@@(n-1))(x)), x, n+1), x, n):
    seq(a(n), n=1..19);  # Alois P. Heinz, Feb 11 2022
  • Mathematica
    T[n_, 1] := (n - 1)!; T[n_, k_] := T[n, k] = Sum[StirlingS1[n, j] * T[j, k - 1], {j, 1, n}]; a[n_] := T[n, n]; Array[a, 16] (* Amiram Eldar, Feb 11 2022 *)
  • PARI
    T(n, k) = if(k==1, (n-1)!, sum(j=1, n, stirling(n, j, 1)*T(j, k-1)));
    a(n) = T(n, n);

Formula

a(n) = T(n,n), T(n,k) = Sum_{j=1..n} Stirling1(n,j) * T(j,k-1), k>1, T(n,1) = (n-1)!.

A363010 a(n) = n! * [x^n] 1/(1 - f^n(x)), where f(x) = exp(x) - 1.

Original entry on oeis.org

1, 1, 4, 36, 594, 15775, 618838, 33757864, 2448904188, 228290728635, 26617527649365, 3797508644987398, 651082351708066303, 132130157056046918808, 31333332827346731906130, 8587011712002719806274022, 2693586800519167315881703732, 958983405298849163873718493941
Offset: 0

Views

Author

Seiichi Manyama, May 12 2023

Keywords

Crossrefs

Main diagonal of A363007.
Main diagonal of A153278 (for n>=1).

Programs

  • Maple
    b:= proc(n, t, m) option remember; `if`(n=0, `if`(t<2, m!,
          b(m, t-1, 0)), m*b(n-1, t, m)+b(n-1, t, m+1))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 12 2023

Formula

a(n) = T(n,n), T(n,k) = Sum_{j=0..n} Stirling2(n,j) * T(j,k-1), k>1, T(n,0) = n!.
Showing 1-8 of 8 results.