A139482 Binomial transform of [1, 1, 2, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, ...].
1, 2, 5, 11, 20, 32, 47, 65, 86, 110, 137, 167, 200, 236, 275, 317, 362, 410, 461, 515, 572, 632, 695, 761, 830, 902, 977, 1055, 1136, 1220, 1307, 1397, 1490, 1586, 1685, 1787, 1892, 2000, 2111, 2225
Offset: 1
Examples
a(4) = 11 = (1, 3, 3, 1) dot (1, 1, 2, 1) = (1 + 3 + 6 + 1).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
1,seq((10+3*n^2-9*n)*1/2,n=2..40); # Emeric Deutsch, May 03 2008
-
Mathematica
Join[{1,2},FoldList[##+3&,5,3*Range@100]] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2011 *) LinearRecurrence[{3,-3,1},{1,2,5,11},40] (* Harvey P. Dale, May 02 2015 *)
Formula
G.f.: (x^3+2*x^2-x+1)/(-x^3+3*x^2-3*x+1). - Alexander R. Povolotsky, Apr 24 2008
a(n) = (10 - 9*n + 3*n^2)/2 for n >= 2. - Emeric Deutsch, May 03 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=2, a(3)=5, a(4)=11. - Harvey P. Dale, May 02 2015
Extensions
More terms from Emeric Deutsch, May 03 2008
Comments