cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A139576 a(n) = n*(2*n + 9).

Original entry on oeis.org

0, 11, 26, 45, 68, 95, 126, 161, 200, 243, 290, 341, 396, 455, 518, 585, 656, 731, 810, 893, 980, 1071, 1166, 1265, 1368, 1475, 1586, 1701, 1820, 1943, 2070, 2201, 2336, 2475, 2618, 2765, 2916, 3071, 3230, 3393, 3560, 3731, 3906
Offset: 0

Views

Author

Omar E. Pol, May 19 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n^2 + 9*n.
a(n) = a(n-1) + 4*n + 7 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: x*(11 - 7*x)/(1-x)^3.
E.g.f.: exp(x)*x*(11 + 2*x).
a(n) = A277979(n)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A139577 a(n) = n*(2*n + 11).

Original entry on oeis.org

0, 13, 30, 51, 76, 105, 138, 175, 216, 261, 310, 363, 420, 481, 546, 615, 688, 765, 846, 931, 1020, 1113, 1210, 1311, 1416, 1525, 1638, 1755, 1876, 2001, 2130, 2263, 2400, 2541, 2686, 2835, 2988, 3145, 3306, 3471, 3640, 3813, 3990
Offset: 0

Views

Author

Omar E. Pol, May 19 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n^2 + 11*n.
a(n) = a(n-1) + 4*n + 9 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: x*(13 - 9*x)/(1-x)^3.
E.g.f.: exp(x)*x*(13 + 2*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A139578 a(n) = n*(2*n + 13).

Original entry on oeis.org

0, 15, 34, 57, 84, 115, 150, 189, 232, 279, 330, 385, 444, 507, 574, 645, 720, 799, 882, 969, 1060, 1155, 1254, 1357, 1464, 1575, 1690, 1809, 1932, 2059, 2190, 2325, 2464, 2607, 2754, 2905, 3060, 3219, 3382, 3549, 3720, 3895, 4074, 4257, 4444, 4635, 4830, 5029
Offset: 0

Views

Author

Omar E. Pol, May 19 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n^2 + 13*n.
a(n) = a(n-1) + 4*n + 11 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: x*(15 - 11*x)/(1 - x)^3.
E.g.f.: exp(x)*x*(15 + 2*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A139580 a(n) = n*(2*n + 17).

Original entry on oeis.org

0, 19, 42, 69, 100, 135, 174, 217, 264, 315, 370, 429, 492, 559, 630, 705, 784, 867, 954, 1045, 1140, 1239, 1342, 1449, 1560, 1675, 1794, 1917, 2044, 2175, 2310, 2449, 2592, 2739, 2890, 3045, 3204, 3367, 3534, 3705, 3880, 4059
Offset: 0

Views

Author

Omar E. Pol, May 19 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n^2 + 17*n.
a(n) = a(n-1) + 4*n + 15; a(0) = 0. - Vincenzo Librandi, Nov 24 2010
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: x*(19 - 15*x)/(1-x)^3.
E.g.f.: exp(x)*x*(19 + 2*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A139581 a(n) = n*(2*n + 19).

Original entry on oeis.org

0, 21, 46, 75, 108, 145, 186, 231, 280, 333, 390, 451, 516, 585, 658, 735, 816, 901, 990, 1083, 1180, 1281, 1386, 1495, 1608, 1725, 1846, 1971, 2100, 2233, 2370, 2511, 2656, 2805, 2958, 3115, 3276, 3441, 3610, 3783, 3960, 4141
Offset: 0

Views

Author

Omar E. Pol, May 19 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n^2 + 19*n.
a(n) = a(n-1) + 4*n + 17 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: x*(21 - 17*x)/(1-x)^3.
E.g.f.: exp(x)*x*(21 + 2*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A177731 Numbers which can be written as a sum of consecutive numbers, where the largest term in the sum is an odd number >= 3.

Original entry on oeis.org

5, 6, 9, 12, 13, 14, 15, 17, 18, 21, 22, 24, 25, 27, 28, 29, 30, 33, 35, 36, 37, 38, 39, 41, 42, 44, 45, 46, 48, 49, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 69, 70, 72, 73, 75, 76, 77, 78, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form sum_{i=j..2k+1} i where j>=1 and 2k+1>j and k>=1. Numbers of the form (2k+1+j)*(2k+2-j)/2, j>=1, k>=1, 2k+1>j. - R. J. Mathar, Dec 04 2011
Subsequences include the A000384 where >=6, the A014106 where >=5, A071355 where >=12, A130861 where >=9, A139577 where >=13, A139579 where >=17 etc. The sequence is the union of all odd-indexed rows of A141419, except its first column and numbers <=3: {5,6}, {9,12,14,15}, {13,18,22,25,27,28}, ... - R. J. Mathar, Dec 04 2011
Does this sequence have asymptotic density 1? - Robert Israel, Nov 27 2018

Examples

			5=2+3, 6=1+2+3, 9=4+5, 12=3+4+5,...
		

Crossrefs

Contains A004766, A017137 and nonzero terms of A008588.
Disjoint from A002145.
Subsequence of A138591.

Programs

  • Maple
    f:= proc(n) local r,k;
      for r in select(t -> (2*t-1)^2 >= 1+8*n, numtheory:-divisors(2*n) minus {2*n}) do
        k:= (r + 2*n/r - 3)/4;
        if k::posint and r >= 2*k+2 then return true fi
      od:
      false
    end proc:
    select(f, [$1..1000]); # Robert Israel, Nov 27 2018
  • Mathematica
    z=200;lst1={};Do[c=a;Do[c+=b;If[c<=2*z,AppendTo[lst1,c]],{b,a-1,1,-1}],{a,1,z,2}];Union@lst1
Showing 1-6 of 6 results.