A139643 Primes of the form x^2+Ny^2, with N=102.
103, 127, 151, 223, 271, 409, 433, 457, 463, 577, 631, 727, 769, 919, 937, 967, 1033, 1039, 1063, 1087, 1249, 1279, 1327, 1447, 1471, 1543, 1657, 1753, 1759, 1777, 1783, 1801, 1879, 1951, 1993, 2089, 2143, 2161, 2287, 2311, 2473, 2503, 2551
Offset: 1
References
- David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
- L. E. Dickson, History of the Theory of Numbers, Vol 3, Chelsea, 1923.
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Programs
-
Magma
[ p: p in PrimesUpTo(3000) | p mod 408 in {1, 25, 49, 55, 103, 121, 127, 145, 151, 169, 217, 223, 247, 271, 319, 361}]; // Vincenzo Librandi, Jul 28 2012
-
Magma
k:=102; [p: p in PrimesUpTo(3000) | NormEquation(k, p) eq true]; // Bruno Berselli, Jun 01 2016
-
Maple
C:= [1, 25, 49, 55, 103, 121, 127, 145, 151, 169, 217, 223, 247, 271, 319, 361]: select(isprime, [seq(seq(408*i+j,j=C),i=0..100)]); # Robert Israel, Jul 03 2016
-
Mathematica
nn=102; pMax=10000; Union[Reap[Do[p=x^2+nn*y^2; If[p<=pMax && PrimeQ[p], Sow[p]], {x,Sqrt[pMax]}, {y, Sqrt[pMax/nn]}]][[2,1]]] (* T. D. Noe, Aug 02 2009 *) QuadPrimes2[1, 0, 102, 10000] (* see A106856 *)
Comments