cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139645 Primes of the form x^2 + 112*y^2.

Original entry on oeis.org

113, 137, 193, 233, 281, 337, 401, 449, 457, 569, 617, 641, 673, 809, 953, 977, 1009, 1033, 1129, 1201, 1289, 1297, 1409, 1481, 1801, 1873, 1913, 2017, 2081, 2129, 2137, 2153, 2297, 2377, 2417, 2473, 2521, 2633, 2657, 2689, 2713, 2753, 2801
Offset: 1

Views

Author

T. D. Noe, Apr 29 2008

Keywords

Comments

Discriminant is -448. See A139643 for more information.
Primes of the form 8*n + 1 which cannot be expressed as 7*k - 1, 7*k - 2, or 7*k - 4. a(n)^3 == 1 (mod 56). - Gary Detlefs, Jan 26 2014
The primes are congruent to {1, 9, 25} (mod 56).

Programs

  • Magma
    [ p: p in PrimesUpTo(3000) | p mod 56 in {1, 9, 25}]; // Vincenzo Librandi, Jul 28 2012
    
  • Magma
    k:=112; [p: p in PrimesUpTo(3000) | NormEquation(k, p) eq true]; // Bruno Berselli, Jun 01 2016
  • Maple
    f:=n-> ceil((8*n+1)/7)-(8*n+1): for n from 1 to 350 do if isprime(8*n+1) and f(n)<>1 and f(n)<>2 and f(n)<>4 then print(8*n+1) fi od. # Gary Detlefs, Jan 26 2014
  • Mathematica
    QuadPrimes2[1, 0, 112, 10000] (* see A106856 *)