cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139714 a(n) = Sum_{k>=0} binomial(n,5*k+2).

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 22, 36, 72, 165, 385, 859, 1807, 3614, 6995, 13380, 25773, 50559, 101118, 204820, 416405, 843756, 1698458, 3396916, 6765175, 13455325, 26789257, 53457121, 106914242, 214146295, 429124630, 859595529, 1720537327, 3441074654
Offset: 0

Views

Author

N. J. A. Sloane, Jun 13 2008

Keywords

Comments

From Gary W. Adamson, Mar 14 2009: (Start)
M^n * [1,0,0,0,0] = [A139398(n), A139761(n), A139748(n), a(n), A133476(n)]
where M = a 5 X 5 matrix [1,1,0,0,0; 0,1,1,0,0; 0,0,1,1,0; 0,0,0,1,1; 1,0,0,0,1].
Sum of terms = 2^n. Example: M^6 = [7, 15, 20, 15, 7], sum = 2^6 = 64. (End)
{A139398, A133476, A139714, A139748, A139761} is the difference analog of the hyperbolic functions of order 5, {h_1(x), h_2(x), h_3(x), h_4(x), h_5 (x)}. For a definition see [Erdelyi] and the Shevelev link. - Vladimir Shevelev, Jun 18 2017

References

  • A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.

Crossrefs

Programs

  • Magma
    [n le 5 select (n-2)*(n-1)/2 else 5*Self(n-1)- 10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+2*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 21 2015
  • Maple
    a:= n-> (Matrix(5, (i, j)-> `if`((j-i) mod 5 in [0, 1], 1, 0))^n)[4, 1]:
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 21 2015
  • Mathematica
    CoefficientList[Series[x^2 (x - 1)^2/((1 - 2 x) (x^4 - 2 x^3 + 4 x^2 - 3 x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 21 2015 *)
  • PARI
    a(n) = sum(k=0, n\5, binomial(n,5*k+2)); \\ Michel Marcus, Dec 21 2015
    
  • PARI
    x='x+O('x^100); concat([0, 0], Vec(-x^2*(x-1)^2/((2*x-1)*(x^4-2*x^3+4*x^2-3*x+1)))) \\ Altug Alkan, Dec 21 2015
    

Formula

G.f.: -x^2*(x-1)^2/((2*x-1)*(x^4-2*x^3+4*x^2-3*x+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
a(n) = round((2/5)*(2^(n-1)+phi^n*cos(Pi*(n-4)/5))), where phi is the golden ratio, round(x) is the integer nearest to x. - Vladimir Shevelev, Jun 18 2017
a(n+m) = a(n)*H_1(m) + H_2(n)*H_2(m) + H_1(n)*a(m) + H_5(n)*H_4(m) + H_4(n)*H_5(m), where H_1=A139398, H_2=A133476, H_4=A139748, H_5=A139761. - Vladimir Shevelev, Jun 18 2017