cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139823 Decimal expansion of constant c = Sum_{n>=0} C(1/2^n, n).

Original entry on oeis.org

1, 4, 3, 0, 6, 3, 4, 5, 2, 4, 3, 6, 1, 1, 6, 8, 6, 5, 7, 0, 6, 6, 1, 8, 0, 3, 3, 7, 5, 5, 9, 0, 2, 9, 5, 5, 4, 7, 0, 6, 8, 7, 3, 0, 9, 8, 5, 0, 5, 3, 9, 8, 7, 9, 1, 7, 6, 0, 7, 5, 5, 4, 5, 8, 9, 2, 6, 8, 9, 4, 6, 7, 1, 8, 1, 4, 9, 9, 5, 5, 8, 2, 1, 5, 4, 3, 6, 5, 4, 4, 9, 2, 6, 2, 1, 8, 6, 6, 8, 1, 3, 4, 3, 7, 1
Offset: 1

Views

Author

Paul D. Hanna, May 01 2008

Keywords

Examples

			c = 1.43063452436116865706618033755902955470687309850539879176075545...
c = 1 + 1/2 - 3/32 + 35/1024 - 7285/524288 + 1570863/268435456 -+...
c = 1 + log(3/2) + log(5/4)^2/2! + log(9/8)^3/3! + log(17/16)^4/4! +...
The formulas for this constant illustrate the identity:
Sum_{n>=0} log(1 + q^n*x)^n*y^n/n! = Sum_{n>=0} binomial(q^n*y, n)*x^n.
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Table[Binomial[1/2^n,n],{n,0,1000}]],10,120][[1]] (* Harvey P. Dale, Nov 13 2014 *)
  • PARI
    a(n)=local(c=sum(m=0,n,log(1+1/2^m)^m/m!));floor(c*10^n)%10

Formula

c = Sum_{n>=0} log(1 + 1/2^n)^n/n! .