cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A379168 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A140049.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 5, 0, 1, 3, 12, 55, 0, 1, 4, 21, 140, 1005, 0, 1, 5, 32, 261, 2600, 26601, 0, 1, 6, 45, 424, 4965, 68752, 941863, 0, 1, 7, 60, 635, 8304, 132003, 2414188, 42372177, 0, 1, 8, 77, 900, 12845, 223104, 4617675, 107385896, 2336926665, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 11 2025

Keywords

Examples

			Square array begins:
  1,      1,       1,       1,       1,        1,        1, ...
  0,      1,       2,       3,       4,        5,        6, ...
  0,      5,      12,      21,      32,       45,       60, ...
  0,     55,     140,     261,     424,      635,      900, ...
  0,   1005,    2600,    4965,    8304,    12845,    18840, ...
  0,  26601,   68752,  132003,  223104,   350125,   522576, ...
  0, 941863, 2414188, 4617675, 7806424, 12296935, 18477828, ...
		

Crossrefs

Columns k=0..1 give A000007, A140049.

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, (n+k)^(j-1)*binomial(n, j)*a(n-j, j)));

Formula

See A140049.

A162659 E.g.f. A(x) satisfies A(x) = exp(x*A(x*A(x))).

Original entry on oeis.org

1, 1, 3, 22, 281, 5396, 142297, 4865806, 207407489, 10710044776, 655655874641, 46789973764634, 3840103504940881, 358443042637767868, 37700333788138306937, 4432826052558222878206, 578707468284010393533953, 83384676375176176768112720, 13190759232920144271864441505
Offset: 0

Views

Author

Paul D. Hanna, Jul 09 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 22*x^3/3! + 281*x^4/4! + 5396*x^5/5! +...
A(x*A(x)) = 1 + x + 5*x^2/2! + 49*x^3/3! + 777*x^4/4! + 17581*x^5/5! +...
log(A(x)) = x + 2*x^2/2! + 15*x^3/3! + 196*x^4/4! + 3885*x^5/5! + 105486*x^6/6! +...
		

Crossrefs

Cf. A140049.

Programs

  • Mathematica
    terms = 19; A[] = 0; Do[A[x] = Exp[x*A[x*A[x]]] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x]Range[0,terms-1]! (* Stefano Spezia, Mar 24 2025 *)
  • PARI
    {a(n,m=1)=if(n==0,1,if(m==0,0^n,sum(k=0,n,binomial(n,k)*m*(n-k+m)^(k-1)*a(n-k,k))))}
    
  • PARI
    /* Log(A(x)) = x*A(x*A(x)) = Sum_{n>=1} L(n)*x^n/n! where: */
    {L(n)=if(n<1,0,sum(k=1,n,binomial(n,k)*(n-k)^(k-1)*a(n-k,k)))}

Formula

Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n! with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} C(n,k) * m*(n-k+m)^(k-1) * a(n-k,k).
...
Let log(A(x)) = x*A(x*A(x)) = Sum_{n>=1} L(n)*x^n/n!, then
L(n) = Sum_{k=1..n} C(n,k) * (n-k)^(k-1) * a(n-k,k).
...
E.g.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n/n! * [D^(n-1) A(x)^n] where operator D F(x) = d/dx x*F(x). - Paul D. Hanna, Mar 05 2013

A144681 E.g.f. satisfies: A(x/A(x)) = exp(x).

Original entry on oeis.org

1, 1, 3, 22, 305, 6656, 204337, 8226436, 414585425, 25315924960, 1828704716801, 153433983789164, 14739472821255481, 1602471473448455104, 195300935112810494801, 26470100501608768436716
Offset: 0

Views

Author

Paul D. Hanna, Sep 19 2008

Keywords

Examples

			E.g.f. A(x) = 1 + x + 3*x^2/2! + 22*x^3/3! + 305*x^4/4! +...
A(x/A(x)) = 1 + x + x^2/2! + x^3/3! + x^4/4! + x^5/5! +...
1/A(x) = 1 + x - x^2/2! + 10*x^3/3! - 159*x^4/4! + 3816*x^5/5! -+...
A(log(A(x))) = 1 + x + 5*x^2/2! + 55*x^3/3! + 1005*x^4/4! + 26601*x^5/5! +...
ILLUSTRATE FORMULA a(n+1) = [x^n/n!] exp(x)*A(x)^(n+1) as follows.
Form a table of coefficients of x^k/k! in exp(x)*A(x)^n for n>=1, k>=0:
exp(x)*A(x)^1: [(1), 2, 6, 35, 416, 8437, 249340, ...];
exp(x)*A(x)^2: [1,(3), 13, 93, 1145, 22593, 645741, ...];
exp(x)*A(x)^3: [1, 4,(22), 181, 2320, 45199, 1257364, ...];
exp(x)*A(x)^4: [1, 5, 33,(305), 4097, 79825, 2177329, ...];
exp(x)*A(x)^5: [1, 6, 46, 471,(6656), 131001, 3529836, ...];
exp(x)*A(x)^6: [1, 7, 61, 685, 10201,(204337), 5477005, ...];
exp(x)*A(x)^7: [1, 8, 78, 953, 14960, 306643,(8226436), ...]; ...
then the terms along the main diagonal form this sequence shift left.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(n=0,n,A=exp(serreverse(x/A)));n!*polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x+sum(k=2,n-1,a(k)*x^k/k!)+x*O(x^n));if(n==0,1,(n-1)!*polcoeff(exp(x+x*O(x^n))*A^n,n-1))}

Formula

E.g.f. satisfies: A(x) = exp( x*A(log A(x)) ).
E.g.f. satisfies: a(n+1) = [x^n/n!] exp(x)*A(x)^(n+1).
E.g.f: A(x) = G(2x)^(1/2) where G(x/G(x)^2) = exp(x) and G(x) is the e.g.f. of A144682.
E.g.f: A(x) = G(3x)^(1/3) where G(x/G(x)^3) = exp(x) and G(x) is the e.g.f. of A144683.
E.g.f: A(x) = G(4x)^(1/4) where G(x/G(x)^4) = exp(x) and G(x) is the e.g.f. of A144684.
E.g.f: A(x) = 1/G(-x) where G(x*G(x)) = exp(x) and G(x) is the e.g.f. of A087961.
E.g.f. A(log(A(x))) = log(A(x))/x = G(x) is the e.g.f of A140049 where G(x) satisfies G(x*exp(-x*G(x))) = exp(x*G(x)).

A384689 E.g.f. A(x) satisfies A(x) = exp( x*A(x)^2 * A(x*A(x)) ).

Original entry on oeis.org

1, 1, 7, 106, 2593, 89796, 4085029, 232694806, 16053415249, 1308960150472, 123811136509861, 13387049625793746, 1635128238889494793, 223420020463904387020, 33872693045213102767093, 5658826351169923606739206, 1035543935182601250745181089, 206506472947550295487980305424
Offset: 0

Views

Author

Seiichi Manyama, Jun 07 2025

Keywords

Crossrefs

Column k=1 of A384690.
Cf. A140049.

Programs

  • Mathematica
    terms = 18; A[] = 0; Do[A[x] = Exp[x*A[x]^2*A[x*A[x]]] + O[x]^terms // Normal, terms]; Range[0,terms-1]!CoefficientList[A[x], x] (* Stefano Spezia, Jun 07 2025 *)
  • PARI
    a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, (n+j+k)^(j-1)*binomial(n, j)*a(n-j, j)));

Formula

See A384690.

A384787 E.g.f. A(x) satisfies A(x) = exp( x*A(x) * A(2*x*A(x)) ).

Original entry on oeis.org

1, 1, 7, 148, 7381, 801536, 186678019, 93865986880, 102755888482153, 245872091164966912, 1285664593514044479391, 14650473009515606022910976, 362327823926201727094352145661, 19359048028300511200690402408529920, 2224311455921555052696103713299884826395
Offset: 0

Views

Author

Seiichi Manyama, Jun 10 2025

Keywords

Crossrefs

Column k=1 of A384788.
Cf. A140049.

Programs

  • PARI
    a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, 2^(n-j)*(n+k)^(j-1)*binomial(n, j)*a(n-j, j)));

Formula

See A384788.
Showing 1-5 of 5 results.