A140064 a(n) = (9*n^2 - 5*n + 2)/2.
1, 3, 14, 34, 63, 101, 148, 204, 269, 343, 426, 518, 619, 729, 848, 976, 1113, 1259, 1414, 1578, 1751, 1933, 2124, 2324, 2533, 2751, 2978, 3214, 3459, 3713, 3976, 4248, 4529, 4819, 5118, 5426, 5743, 6069, 6404, 6748, 7101, 7463, 7834, 8214, 8603, 9001, 9408, 9824, 10249, 10683, 11126, 11578, 12039, 12509, 12988, 13476, 13973
Offset: 0
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..5000 [First 1000 terms from G. C. Greubel]
- N. J. A. Sloane, The long-legged letters A, I, V, X, and Z. The long-legged A is a long-legged V with a crossbar. The distances from the tip of the A to the end-points of the crossbar need not be equal.
- N. J. A. Sloane, 14 regions using 2 copies of the Wu graph
- N. J. A. Sloane, 34 regions using 3 copies of the Wu graph
- N. J. A. Sloane, Transforming a Hatpin graph to a Wu graph.
- N. J. A. Sloane, 14 regions using 2 long-legged A's [Crossbars are shown in red]
- N. J. A. Sloane, 34 regions using 3 long-legged A's [Crossbars are shown in red]
- N. J. A. Sloane, Transforming a long-legged A_n graph to a Wu_n graph, and vice-versa
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[ n eq 1 select 1 else Self(n-1)+9*n-16: n in [1..50] ];
-
Maple
seq((16-23*n+9*n^2)*1/2,n=1..40); # Emeric Deutsch, May 07 2008
-
Mathematica
Table[(9n^2-23n+16)/2,{n,40}] (* or *) LinearRecurrence[{3,-3,1},{1,3,14},40] (* Harvey P. Dale, Oct 01 2011 *)
-
PARI
x='x+O('x^50); Vec(x*(1+8*x^2)/(1-x)^3) \\ G. C. Greubel, Feb 18 2017
Formula
Binomial transform of [1, 2, 9, 0, 0, 0, ...].
O.g.f.: x*(1+8*x^2)/(1-x)^3. - R. J. Mathar, May 06 2008
a(n) = A064226(n-2), n>1. - R. J. Mathar, Jul 31 2008
a(n) = a(n-1) + 9*n - 16, a(1)=1. - Vincenzo Librandi, Nov 24 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=3, a(3)=14. - Harvey P. Dale, Oct 01 2011
E.g.f.: exp(x)*(16 - 14*x + 9*x^2)/2. - Stefano Spezia, Dec 25 2022
Extensions
More terms from R. J. Mathar and Emeric Deutsch, May 06 2008
Edited by N. J. A. Sloane, Jun 21 2025 and Jun 26 2025
Comments