cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140070 Triangle read by rows, iterates of matrix X * [1,0,0,0,...], where X = an infinite lower bidiagonal matrix with [1,3,1,3,1,3,...] in the main diagonal and [1,1,1,...] in the subdiagonal.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 5, 1, 1, 40, 18, 8, 1, 1, 121, 58, 42, 9, 1, 1, 364, 179, 184, 51, 12, 1, 1, 1093, 543, 731, 235, 87, 13, 1, 1, 3280, 1636, 2736, 966, 496, 100, 16, 1, 1, 9841, 4916, 9844, 3702, 2454, 596, 148, 17, 1, 1, 29524, 14757, 34448, 13546, 11064, 3050, 1040, 165, 20, 1
Offset: 1

Views

Author

Gary W. Adamson, May 04 2008

Keywords

Comments

Row sums = A006012: (1, 2, 6, 20, 68, 232, 792, 2704,...).
Companion to triangle A140071.

Examples

			First few rows of the triangle are:
  1;
  1,    1;
  1,    4,    1;
  1,   13,    5,    1;
  1,   40,   18,    8,   1;
  1,  121,   58,   42,   9,   1;
  1,  364,  179,  184,  51,  12,   1;
  1, 1093,  543,  731, 235,  87,  13,  1;
  1, 3280, 1636, 2736, 966, 496, 100, 16, 1;
  ...
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(k<0 or k>n, 0, `if`(k=0 or k=n, 1,
          4*T(n-1, k) - 3*T(n-2, k) + T(n-2, k-2)))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Feb 18 2020
  • Mathematica
    With[{m = 10}, CoefficientList[CoefficientList[Series[(1 + (y - 3)*x)/(1 - 4*x - (y^2 - 3)*x^2), {x, 0, m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 18 2020 *)

Formula

Triangle read by rows, iterates of matrix X * [1,0,0,0,...], where X = an infinite lower bidiagonal matrix with [1,3,1,3,1,3,...] in the main diagonal and [1,1,1,...] in the subdiagonal; with the rest zeros.
From Peter Bala, Jan 17 2014: (Start)
O.g.f.: (1 + (x - 3)*z)/(1 - 4*z - (x^2 - 3)*z^2) = 1 + (x + 1)*z + (x^2 + 4*x + 1)*z^2 + ....
Recurrence equation: T(n,k) = 4*T(n-1,k) - 3*T(n-2,k) + T(n-2,k-2).
Recurrence equation for row polynomials: R(n,x) = 4*R(n-1,x) + (x^2 - 3)*R(n-2,x) with R(0,x) = 1 and R(1,x) = 1 + x.
Another recurrence equation: R(n,x) = (x + 2)*R(n-1,x) - R(n-1,-x) with R(0,x) = 1. Cf. A157751. (End)