cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A006012 a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - 2*a(n-2), n >= 2.

Original entry on oeis.org

1, 2, 6, 20, 68, 232, 792, 2704, 9232, 31520, 107616, 367424, 1254464, 4283008, 14623104, 49926400, 170459392, 581984768, 1987020288, 6784111616, 23162405888, 79081400320, 270000789504, 921840357376, 3147359850496
Offset: 0

Views

Author

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 4, s(2n) = 4. - Herbert Kociemba, Jun 12 2004
a(n-1) counts permutations pi on [n] for which the pairs {i, pi(i)} with i < pi(i), considered as closed intervals [i+1,pi(i)], do not overlap; equivalently, for each i in [n] there is at most one j <= i with pi(j) > i. Counting these permutations by the position of n yields the recurrence relation. - David Callan, Sep 02 2003
a(n) is the sum of (n+1)-th row terms of triangle A140070. - Gary W. Adamson, May 04 2008
The binomial transform is in A083878, the Catalan transform in A084868. - R. J. Mathar, Nov 23 2008
Equals row sums of triangle A152252. - Gary W. Adamson, Nov 30 2008
Counts all paths of length (2*n), n >= 0, starting at the initial node on the path graph P_7, see the second Maple program. - Johannes W. Meijer, May 29 2010
From L. Edson Jeffery, Apr 04 2011: (Start)
Let U_1 and U_3 be the unit-primitive matrices (see [Jeffery])
U_1 = U_(8,1) = [(0,1,0,0); (1,0,1,0); (0,1,0,1); (0,0,2,0)] and
U_3 = U_(8,3) = [(0,0,0,1); (0,0,2,0); (0,2,0,1); (2,0,2,0)]. Then a(n) = (1/4) * Trace(U_1^(2*n)) = (1/2^(n+2)) * Trace(U_3^(2*n)). (See also A084130, A001333.) (End)
Pisano period lengths: 1, 1, 8, 1, 24, 8, 6, 1, 24, 24, 120, 8, 168, 6, 24, 1, 8, 24, 360, 24, ... - R. J. Mathar, Aug 10 2012
a(n) is the first superdiagonal of array A228405. - Richard R. Forberg, Sep 02 2013
Conjecture: With offset 1, a(n) is the number of permutations on [n] with no subsequence abcd such that (i) bc are adjacent in position and (ii) max(a,c) < min(b,d). For example, the 4 permutations of [4] not counted by a(4) are 1324, 1423, 2314, 2413. - David Callan, Aug 27 2014
The conjecture of David Callan above is correct - with offset 1, a(n) is the number of permutations on [n] with no subsequence abcd such that (i) bc are adjacent in position and (ii) max(a,c) < min(b,d). - Yonah Biers-Ariel, Jun 27 2017
From Gary W. Adamson, Jul 22 2016: (Start)
A production matrix for the sequence is M =
1, 1, 0, 0, 0, 0, ...
1, 0, 3, 0, 0, 0, ...
1, 0, 0, 3, 0, 0, ...
1, 0, 0, 0, 3, 0, ...
1, 0, 0, 0, 0, 3, ...
...
Take powers of M, extracting the upper left terms; getting the sequence starting: (1, 1, 2, 6, 20, 68, ...). (End)
From Gary W. Adamson, Jul 24 2016: (Start)
The sequence is the INVERT transform of the powers of 3 prefaced with a "1": (1, 1, 3, 9, 27, ...) and is N=3 in an infinite of analogous sequences starting:
N=1 (A000079): 1, 2, 4, 8, 16, 32, ...
N=2 (A001519): 1, 2, 5, 13, 34, 89, ...
N=3 (A006012): 1, 2, 6, 20, 68, 232, ...
N=4 (A052961): 1, 2, 7, 29, 124, 533, ...
N=5 (A154626): 1, 2, 8, 40, 208, 1088, ...
N=6: 1, 2, 9, 53, 326, 2017, ...
... (End)
Number of permutations of length n > 0 avoiding the partially ordered pattern (POP) {1>2, 1>3, 4>2, 4>3} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first and fourth elements are larger than the second and third elements. - Sergey Kitaev, Dec 08 2020
a(n-1) is the number of permutations of [n] that can be obtained by placing n points on an X-shape (two crossing lines with slopes 1 and -1), labeling them 1,2,...,n by increasing y-coordinate, and then reading the labels by increasing x-coordinate. - Sergi Elizalde, Sep 27 2021
Consider a stack of pancakes of height n, where the only allowed operation is reversing the top portion of the stack. First, perform a series of reversals of decreasing sizes, followed by a series of reversals of increasing sizes. The number of distinct permutations of the initial stack that can be reached through these operations is a(n). - Thomas Baruchel, May 12 2025
Number of permutations of [n] that are correctly sorted after performing one left-to-right pass and one right-to-left pass of the cocktail sort. - Thomas Baruchel, May 16 2025

References

  • D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms. Birkhäuser, Boston, 3rd edition, 1990, p. 86.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 5.4.8 Answer to Exer. 8.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006012 n = a006012_list !! n
    a006012_list = 1 : 2 : zipWith (-) (tail $ map (* 4) a006012_list)
    (map (* 2) a006012_list)
    -- Reinhard Zumkeller, Oct 03 2011
    
  • Magma
    [n le 2 select n else 4*Self(n-1)- 2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 05 2011
    
  • Maple
    A006012:=-(-1+2*z)/(1-4*z+2*z**2); # Simon Plouffe in his 1992 dissertation
    with(GraphTheory): G:=PathGraph(7): A:= AdjacencyMatrix(G): nmax:=24; n2:=2*nmax: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..7); od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    LinearRecurrence[{4,-2},{1,2},50] (* or *) With[{c=Sqrt[2]}, Simplify[ Table[((2+c)^n+(3+2c)(2-c)^n)/(2(2+c)),{n,50}]]] (* Harvey P. Dale, Aug 29 2011 *)
  • PARI
    {a(n) = real(((2 + quadgen(8))^n))}; /* Michael Somos, Feb 12 2004 */
    
  • PARI
    {a(n) = if( n<0, 2^n, 1) * polsym(x^2 - 4*x + 2, abs(n))[abs(n)+1] / 2}; /* Michael Somos, Feb 12 2004 */
    
  • PARI
    Vec((1-2*x)/(1-4*x+2*x^2) + O(x^100)) \\ Altug Alkan, Dec 05 2015
    
  • Python
    l = [1, 2]
    for n in range(2, 101): l.append(4 * l[n - 1] - 2 * l[n - 2])
    print(l)  # Indranil Ghosh, Jul 02 2017
    
  • SageMath
    A006012=BinaryRecurrenceSequence(4,-2,1,2)
    print([A006012(n) for n in range(41)]) # G. C. Greubel, Aug 27 2025

Formula

G.f.: (1-2*x)/(1 - 4*x + 2*x^2).
a(n) = 2*A007052(n-1) = A056236(n)/2.
Limit_{n -> oo} a(n)/a(n-1) = 2 + sqrt(2). - Zak Seidov, Oct 12 2002
From Paul Barry, May 08 2003: (Start)
Binomial transform of A001333.
E.g.f.: exp(2*x)*cosh(sqrt(2)*x). (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*2^(n-k) = Sum_{k=0..n} binomial(n, k)*2^(n-k/2)(1+(-1)^k)/2. - Paul Barry, Nov 22 2003 (typo corrected by Manfred Scheucher, Jan 17 2023)
a(n) = ((2+sqrt(2))^n + (2-sqrt(2))^n)/2.
a(n) = Sum_{k=0..n} 2^k*A098158(n,k). - Philippe Deléham, Dec 04 2006
a(n) = A007070(n) - 2*A007070(n-1). - R. J. Mathar, Nov 16 2007
a(n) = Sum_{k=0..n} A147703(n,k). - Philippe Deléham, Nov 29 2008
a(n) = Sum_{k=0..n} A201730(n,k). - Philippe Deléham, Dec 05 2011
G.f.: G(0) where G(k)= 1 + 2*x/((1-2*x) - 2*x*(1-2*x)/(2*x + (1-2*x)*2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
G.f.: G(0)*(1-2*x)/2, where G(k) = 1 + 1/(1 - 2*x*(4*k+2-x)/( 2*x*(4*k+4-x) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 27 2014
a(-n) = a(n) / 2^n for all n in Z. - Michael Somos, Aug 24 2014
a(n) = A265185(n) / 4, connecting this sequence to the simple Lie algebra B_4. - Tom Copeland, Dec 04 2015
From G. C. Greubel, Aug 27 2025: (Start)
a(n) = 2^((n-2)/2)*( (n+1 mod 2)*A002203(n) + 2*sqrt(2)*(n mod 2)*A000129(n) ).
a(n) = 2^(n/2)*ChebyshevT(n, sqrt(2)). (End)

A157751 Triangle of coefficients of polynomials F(n,x) in descending powers of x generated by F(n,x)=(x+1)*F(n-1,x)+F(n-1,-x), with initial F(0,x)=1.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 4, 4, 8, 1, 4, 12, 8, 16, 1, 6, 12, 32, 16, 32, 1, 6, 24, 32, 80, 32, 64, 1, 8, 24, 80, 80, 192, 64, 128, 1, 8, 40, 80, 240, 192, 448, 128, 256, 1, 10, 40, 160, 240, 672, 448, 1024, 256, 512, 1, 10, 60, 160, 560, 672, 1792, 1024, 2304, 512, 1024, 1, 12, 60, 280, 560, 1792, 1792, 4608, 2304, 5120, 1024, 2048
Offset: 0

Views

Author

Clark Kimberling, Mar 05 2009

Keywords

Comments

Conjecture 1. If n>1 is even then F(n,x) has no real roots.
Conjecture 2. If n>0 is odd then F(n,x) has exactly one real root, r,
and if n>4 then 0 < -r < n.
Conjectures 1 and 2 are true. [From Alain Thiery (Alain.Thiery(AT)math.u-bordeaux1.fr), May 14 2010]
Cayley (1876) states "We, in fact, find 1 + sin u = 1 + x, 1 - sin 3u = (1 + x)(1 - 2x)^2, 1 + sin 5u = (1 + x)(1 + 2x - 4x^2)^2, 1 - sin 7u = (1 + x)(1 - 4x - 4x^2 + 8x^3)^2, &c.". - Michael Somos, Jun 19 2012
Appears to be the unsigned row reverse of A180870 and A228565. - Peter Bala, Feb 17 2014
From Wolfdieter Lang, Jul 29 2014: (Start)
This triangle is the Riordan triangle ((1+z)/(1-z^2), 2*z/(1-z^2)). For Riordan triangles see the W. Lang link 'Sheffer a-and z-sequences' under A006232, also for references. The o.g.f. given by Peter Bala in the formula section refers to the row reversed triangle. The usual information on this triangle, like o.g.f. for the columns, the row sums, the alternating row sums, the recurrences using A- and Z-sequences, etc. follows from this Riordan property. The Riordan proof follows from the given o.g.f. by Peter Bala, call it Grev(x,z), by row reversion: G(x,z) = Grev(1/x,x*z) = (1+z)/(1- 2*x*z - z^2) = G(z)*(1/(1 - x*F(z))) with G(z) = (1+z)/(1-z^2) and F(z) = z*2/(1-z^2). See A244419 for the discussion for a signed version of this triangle.
(End)

Examples

			Rows 0 to 8:
1
1 2
1 2 4
1 4 4 8
1 4 12 8 16
1 6 12 32 16 32
1 6 24 32 80 32 64
1 8 24 80 80 192 64 128
1 8 40 80 240 192 448 128 256
(Row 8) = (1, 4*2, 10*4, 10*8, 15*16, 6*32, 7*64, 1*128, 1*256).
First few polynomials:
F(0,x)=1, F(1,x)=x+2, F(2,x)=x^2+2*x+4, F(3,x)=x^3+4*x^2+4*x+8.
The row polynomials R(n,x) start: 1, 1 + 2*x = x*F(1,1/x), 1 + 2*x + 4^x^2 = x^2*F(2,1/x), ...  - _Wolfdieter Lang_, Jul 29 2014
		

References

  • A. Cayley, On an Expression for 1 +- sin(2p+1)u in Terms of sin u, Messenger of Mathematics, 5 (1876), pp. 7-8 = Mathematical Papers Vol. 10, n. 630, pp. 1-2.

Crossrefs

Programs

  • Mathematica
    T[n_, 0]:= 1; T[n_, n_]:= 2^n; T[n_, k_]:= T[n, k] = T[n-1, k] + (1 + (-1)^(n-k))*T[n-1, k-1]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] (* G. C. Greubel, Sep 24 2018 *)
  • PARI
    t(n,k) = if(k==0, 1, if(k==n, 2^n, t(n-1,k) + (1+(-1)^(n-k))*t(n-1,k-1)));
    for(n=0,15, for(k=0,n, print1(t(n,k), ", "))) \\ G. C. Greubel, Sep 24 2018

Formula

Count the top row as row 0 and let C(n,k) denote the usual binomial
coefficient. For row 2n, define p(0)=C(n,0), p(1)=C(n,1), p(2)=C(n+1,2),
p(3)=C(n+1,3), p(4)=C(n+2,4), p(5)=c(n+2,5),..., until reaching two final
1's: p(2n-1)=C(2n-1,2n-1) and p(2n)=C(2n,2n). Then the k-th number in row
2n is p(k)*2^k. For row 2n+1, define q(0)=C(n,0), q(1)=C(n+1,1),
q(2)=C(n+1,2), q(3)=C(n+2,3),..., until reaching q(2n+1)=C(2n+1,2n+1).
Then the k-th number in row 2n+1 is q(k)*2^k.
From Peter Bala, Jan 17 2014: (Start)
Working with an offset of 0, the o.g.f. is (1 + x*z)/(1 - 2*z - x^2*z^2) = 1 + (x + 2)*z + (x^2 + 2*x + 4)*z^2 + ....
Recurrence equation: T(n,k) = 2*T(n-1,k-1) + T(n-2,k-2) with T(n,0) = 1.
The polynomials G(n,x) defined by G(0,x) = 1 and G(n,x) = x*F(n-1,x) for n >= 1 satisfy G(n,x) = (x + 1)*G(n-1,x) - G(n-1,-x). Cf. A140070 and A140071. (End)
From Wolfdieter Lang, Jul 29 2014: (Start)
O.g.f. for the row polynomials (rising powers of x) R(n,x) = x^n*F(n,1/x): (1+z)/(1 - 2*x*z - z^2). Riordan triangle ((1+z)/(1-z^2), 2*z/(1-z^2)). See a comment above.
Recurrence for the row polynomials R(n,x) = (1+x)*R(n-1,x) - (-1)^n*x*R(n-1,-x), n >= 1, R(0,x) = 1.
R(n,x) = Ftilde(n,2*x) + Ftilde(n-1,2*x) with the monic Fibonacci polynomials Ftilde(n,x) given in A168561.
Recurrence for the triangle: R(n,m) = R(n-1,m) + (1 + (-1)^(n-m))*R(n-1,m-1), n >= m >= 1, R(n,m) = 0 if n < m, R(n,0) = 1.
O.g.f. column sequences ((1+x)/(1-x^2))*(2*x/(1-x^2))^m, m >= 0. See A000012, 2*A004526, 4*A008805, 8*A058187, 16*A189976, 32*A189980, ...
Row sums A078057. Alternating row sums A123335.
(End)

Extensions

Offset corrected to 0. Cf.s added, keyword easy added by Wolfdieter Lang, Jul 29 2014

A157411 a(n) = 30*n^4 - 120*n^3 + 120*n^2 - 19.

Original entry on oeis.org

-19, 11, -19, 251, 1901, 6731, 17261, 36731, 69101, 119051, 191981, 294011, 431981, 613451, 846701, 1140731, 1505261, 1950731, 2488301, 3129851, 3887981, 4776011, 5807981, 6998651, 8363501, 9918731, 11681261, 13668731, 15899501, 18392651
Offset: 0

Views

Author

Paul Curtz, Feb 28 2009

Keywords

Comments

These are the numerators in column j=4 of the array in A140825 (reference p. 36).
The other columns in A140825 are represented by A000012, A005408, A140811 and A141530.
The link between these columns is given by the first differences: a(n+1) - a(n) = 30*A141530(n), where 30 = A027760(4) = A027760(3) = A027642(4) = A002445(2), then for j=3, A141530(n+1) - A141530(n) = A140070(2)*A140811(n).

References

  • P. Curtz, Integration numerique des systemes differentiels a conditions initiales, Centre de Calcul Scientifique de l'Armement, Note 12, Arcueil (1969).

Programs

  • Magma
    [30*n^4 - 120*n^3 + 120*n^2 - 19: n in [0..50]]; // Vincenzo Librandi, Aug 07 2011
    
  • Mathematica
    Table[30n^4-120n^3+120n^2-19,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{-19,11,-19,251,1901},40] (* Harvey P. Dale, Mar 08 2015 *)
  • PARI
    a(n)=30*n^4-120*n^3+120*n^2-19 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(n)= 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: (-19 + 106*x - 264*x^2 + 646*x^3 + 251*x^4)/(1-x)^5.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 720. Fourth differences are constant, 720.

Extensions

Edited, one index corrected and extended by R. J. Mathar, Sep 17 2009

A140071 Triangle read by rows: iterates of X * [1,0,0,0,...]; where X = an infinite lower bidiagonal matrix with [3,1,3,1,3,1...] in the main diagonal and [1,1,1,...] in the subdiagonal.

Original entry on oeis.org

1, 3, 1, 9, 4, 1, 27, 13, 7, 1, 81, 40, 34, 8, 1, 243, 121, 142, 42, 11, 1, 729, 364, 547, 184, 75, 12, 1, 2187, 1093, 2005, 731, 409, 87, 15, 1, 6561, 3280, 7108, 2736, 1958, 496, 132, 16, 1, 19683, 9841, 24604, 9844, 8610, 2454, 892, 148, 19, 1
Offset: 1

Views

Author

Gary W. Adamson and Roger L. Bagula, May 04 2008

Keywords

Comments

Companion triangle A140070 uses an analogous operation with the main diagonal [1,3,1,3,1,3,...].

Examples

			First few rows of the triangle are:
1;
3, 1;
9, 4, 1;
27, 13, 7, 1;
81, 40, 34, 8, 1;
243, 121, 142, 42, 11, 1;
729, 364, 547, 184, 75, 12, 1;
2187, 1093, 2005, 731, 409, 87, 15, 1;
6561, 3280, 7108, 2736, 1958, 496, 132, 16, 1;
...
		

Crossrefs

Cf. A140070, A007070 (row sums), A157751.

Formula

From Peter Bala, Jan 17 2014: (Start)
O.g.f. (1 + (x - 1)*z)/(1 - 4*z - (x^2 - 3)*z^2) = 1 + (x + 3)*z + (x^2 + 4*x + 9)*z^2 + ....
Recurrence equation: T(n,k) = 4*T(n-1,k) - 3*T(n-2,k) + T(n-2,k-2).
Recurrence equation for row polynomials: R(n,x) = 4*R(n-1,x) + (x^2 - 3)*R(n-2,x) with R(0,x) = 1 and R(1,x) = 3 + x.
Another recurrence equation: R(n,x) = (x + 2)*R(n-1,x) + R(n-1,-x) with R(0,x) = 1. Cf. A157751. (End)
Showing 1-4 of 4 results.