A140107 a(n) = binomial(n+3, 3)*7^n.
1, 28, 490, 6860, 84035, 941192, 9882516, 98825160, 951192165, 8877793540, 80787921214, 719746934452, 6297785676455, 54257845827920, 461191689537320, 3874010192113488, 32202709721943369, 265198785945415980, 2165790085220897170, 17554298585474640220
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (28,-294,1372,-2401).
Programs
-
Magma
[7^n* Binomial(n+3, 3): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
-
Maple
seq(binomial(n+3,3)*7^n,n=0..26);
-
Mathematica
Table[Binomial[n+3,3]7^n,{n,0,20}] (* or *) LinearRecurrence[{28,-294,1372,-2401},{1,28,490,6860},20] (* Harvey P. Dale, Jun 21 2016 *)
-
PARI
a(n)=binomial(n+3,3)*7^n \\ Charles R Greathouse IV, Oct 07 2015
Formula
From R. J. Mathar, Jun 03 2009: (Start)
a(n) = 28*a(n-1) - 294*a(n-2) + 1372*a(n-3) - 2401*a(n-4).
G.f.: 1/(7*x-1)^4. (End)
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 756*log(7/6) - 231/2.
Sum_{n>=0} (-1)^n/a(n) = 1344*log(8/7) - 357/2. (End)
Comments