cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140107 a(n) = binomial(n+3, 3)*7^n.

Original entry on oeis.org

1, 28, 490, 6860, 84035, 941192, 9882516, 98825160, 951192165, 8877793540, 80787921214, 719746934452, 6297785676455, 54257845827920, 461191689537320, 3874010192113488, 32202709721943369, 265198785945415980, 2165790085220897170, 17554298585474640220
Offset: 0

Views

Author

Zerinvary Lajos, Jun 03 2008

Keywords

Comments

With a different offset, number of n-permutations (n=4) of 8 objects: s, t, u, v, w, z, x, y with repetition allowed, containing exactly three u's.
uuus, uusu, usuu, suuu,
uuut, uutu, utuu, tuuu,
uuuv, uuvu, uvuu, vuuu,
uuuw, uuwu, uwuu, wuuu,
uuuz, uuzu, uzuu, zuuu,
uuux, uuxu, uxuu, xuuu,
uuuy, uuyu, uyuu, yuuu

Programs

  • Magma
    [7^n* Binomial(n+3, 3): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
    
  • Maple
    seq(binomial(n+3,3)*7^n,n=0..26);
  • Mathematica
    Table[Binomial[n+3,3]7^n,{n,0,20}] (* or *) LinearRecurrence[{28,-294,1372,-2401},{1,28,490,6860},20] (* Harvey P. Dale, Jun 21 2016 *)
  • PARI
    a(n)=binomial(n+3,3)*7^n \\ Charles R Greathouse IV, Oct 07 2015

Formula

From R. J. Mathar, Jun 03 2009: (Start)
a(n) = 28*a(n-1) - 294*a(n-2) + 1372*a(n-3) - 2401*a(n-4).
G.f.: 1/(7*x-1)^4. (End)
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 756*log(7/6) - 231/2.
Sum_{n>=0} (-1)^n/a(n) = 1344*log(8/7) - 357/2. (End)