A128965
a(n) = (n^3 - n)*7^n.
Original entry on oeis.org
0, 294, 8232, 144060, 2016840, 24706290, 276710448, 2905459704, 29054597040, 279650496510, 2610071300760, 23751648836916, 211605598728888, 1851548988877770, 15951806673408480, 135590356723972080, 1138958996481365472, 9467596658251350486, 77968443067952298120
Offset: 1
-
[(n^3 - n)*7^n: n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
-
LinearRecurrence[{28, -294, 1372, -2401}, {0, 294, 8232, 144060}, 30] (* Vincenzo Librandi, Feb 11 2013 *)
Table[(n^3-n)7^n,{n,20}] (* Harvey P. Dale, May 14 2020 *)
A218017
Triangle, read by rows, where T(n,k) = k!*C(n, k)*7^(n-k) for n>=0, k=0..n.
Original entry on oeis.org
1, 7, 1, 49, 14, 2, 343, 147, 42, 6, 2401, 1372, 588, 168, 24, 16807, 12005, 6860, 2940, 840, 120, 117649, 100842, 72030, 41160, 17640, 5040, 720, 823543, 823543, 705894, 504210, 288120, 123480, 35280, 5040, 5764801, 6588344, 6588344, 5647152, 4033680, 2304960, 987840, 282240, 40320
Offset: 0
Triangle begins:
1;
7, 1;
49, 14, 2;
343, 147, 42, 6;
2401, 1372, 588, 168, 24;
16807, 12005, 6860, 2940, 840, 120;
117649, 100842, 72030, 41160, 17640, 5040, 720;
823543, 823543, 705894, 504210, 288120, 123480, 35280, 5040; etc.
-
[Factorial(n)/Factorial(n-k)*7^(n-k): k in [0..n], n in [0..10]];
-
Flatten[Table[n!/(n-k)!*7^(n-k), {n, 0, 10}, {k, 0, n}]]
A170932
a(n) = binomial(n + 8, 8)*7^n .
Original entry on oeis.org
1, 63, 2205, 56595, 1188495, 21630609, 353299947, 5299499205, 74192988870, 980996186170, 12360551945742, 149450309889426, 1743586948709970, 19715944727720430, 216875392004924730, 2327795874186192102, 24441856678955017071, 251607348165713411025
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (63,-1764,28812,-302526,2117682,-9882516,29647548,-51883209,40353607).
-
[Binomial(n + 8, 8)*7^n: n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
-
Table[Binomial[n + 8, 8]*7^n, {n, 0, 20}]
A317014
Triangle read by rows: T(0,0) = 1; T(n,k) = 7 * T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2). T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 7, 49, 1, 343, 14, 2401, 147, 1, 16807, 1372, 21, 117649, 12005, 294, 1, 823543, 100842, 3430, 28, 5764801, 823543, 36015, 490, 1, 40353607, 6588344, 352947, 6860, 35, 282475249, 51883209, 3294172, 84035, 735, 1, 1977326743, 403536070, 29647548, 941192, 12005, 42
Offset: 0
Triangle begins:
1;
7;
49, 1;
343, 14;
2401, 147, 1;
16807, 1372, 21;
117649, 12005, 294, 1;
823543, 100842, 3430, 28;
5764801, 823543, 36015, 490, 1;
40353607, 6588344, 352947, 6860, 35;
282475249, 51883209, 3294172, 84035, 735, 1;
1977326743, 403536070, 29647548, 941192, 12005, 42;
13841287201, 3107227739, 259416045, 9882516, 168070, 1029, 1;
96889010407, 23727920916, 2219448385, 98825160, 2117682, 19208, 49;
678223072849, 179936733613, 18643366434, 951192165, 24706290, 302526, 1372, 1;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 96.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 7 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
-
T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 7*T(n-1, k)+T(n-2, k-1)));
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
A197192
a(n) = binomial(n+9, 9)*7^n.
Original entry on oeis.org
1, 70, 2695, 75460, 1716715, 33647614, 588833245, 9421331920, 140142312310, 1961992372340, 26094498552122, 332111799754280, 4068369546989930, 48194531556649940, 554237112901474310, 6207455664496512272, 67894046330430602975
Offset: 0
-
[Binomial(n+9, 9)*7^n: n in [0..20]];
-
Table[Binomial[n+9,9]7^n,{n,0,20}] (* Harvey P. Dale, Jul 10 2025 *)
A197193
a(n) = binomial(n+10, 10)*7^n.
Original entry on oeis.org
1, 77, 3234, 98098, 2403401, 50471421, 942133192, 16016264264, 252256162158, 3727785507446, 52188997104244, 697434779483988, 8950413003377846, 110847422580294862, 1330169070963538344, 15518639161241280680, 176524520459119567735, 1962537315692564605995, 21369850770874592376390, 228319984551975908021430
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (77,-2695,56595,-792330,7764834,-54353838,271769190,-951192165,2219448385,-3107227739,1977326743).
-
[Binomial(n+10, 10)*7^n: n in [0..20]];
-
Table[Binomial[n+10,10]7^n,{n,0,30}] (* or *) LinearRecurrence[{77,-2695,56595,-792330,7764834,-54353838,271769190,-951192165,2219448385,-3107227739,1977326743},{1,77,3234,98098,2403401,50471421,942133192,16016264264,252256162158,3727785507446,52188997104244},30] (* Harvey P. Dale, Jul 11 2025 *)
Showing 1-6 of 6 results.
Comments