A140154 a(1)=1, a(n) = a(n-1) + n^3 if n odd, a(n) = a(n-1) + n^2 if n is even.
1, 5, 32, 48, 173, 209, 552, 616, 1345, 1445, 2776, 2920, 5117, 5313, 8688, 8944, 13857, 14181, 21040, 21440, 30701, 31185, 43352, 43928, 59553, 60229, 79912, 80696, 105085, 105985, 135776, 136800, 172737, 173893, 216768, 218064, 268717
Offset: 1
Keywords
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..2000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
Programs
-
GAP
a:=[1];; for n in [2..40] do a[n]:=a[n-1]+((1-(-1)^n)/2)*n^3+((1+(-1)^n)/2)*n^2; od; a; # Muniru A Asiru, Jul 12 2018
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(x^2+1)*(x^4-4*x^3+22*x^2+4*x+1)/((1+x)^4*(1-x)^5))); // G. C. Greubel, Jul 12 2018 -
Maple
a:=proc(n) option remember: if n=1 then 1 elif modp(n,2)<>0 then procname(n-1)+n^3 else procname(n-1)+n^2; fi: end; seq(a(n),n=1..40); # Muniru A Asiru, Jul 12 2018
-
Mathematica
a = {}; r = 3; s = 2; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (*Artur Jasinski*) CoefficientList[Series[x*(x^2+1)*(x^4-4*x^3+22*x^2+4*x+1)/((1+x)^4*(1-x)^5), {x,0,30}], x] (* G. C. Greubel, Jul 12 2018 *) nxt[{n_,a_}]:={n+1,If[EvenQ[n],a+(n+1)^3,a+(n+1)^2]}; NestList[nxt,{1,1},40][[All,2]] (* Harvey P. Dale, Aug 05 2019 *)
-
PARI
x='x+O('x^30); Vec(x*(x^2+1)*(x^4-4*x^3+22*x^2+4*x+1)/((1+x)^4*(1-x)^5)) \\ G. C. Greubel, Jul 12 2018
Formula
a(n) = a(n-1) + {[1-(-1)^n]/2}*n^3 + {[1+(-1)^n]/2}*n^2, with a(1)=1.
From R. J. Mathar, Feb 22 2009: (Start)
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9).
G.f.: x*(x^2+1)*(x^4-4*x^3+22*x^2+4*x+1)/((1+x)^4*(1-x)^5). (End)