A167172 Triangle T(n,k) read by rows: T(n,k) = binomial(n, k) + A140356(n, k) - 1.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 11, 11, 5, 1, 1, 6, 16, 25, 16, 6, 1, 1, 7, 22, 40, 40, 22, 7, 1, 1, 8, 29, 61, 93, 61, 29, 8, 1, 1, 9, 37, 89, 149, 149, 89, 37, 9, 1, 1, 10, 46, 125, 233, 371, 233, 125, 46, 10, 1
Offset: 0
Examples
{1}, {1, 1}, {1, 2, 1}, {1, 3, 3, 1}, {1, 4, 7, 4, 1}, {1, 5, 11, 11, 5, 1}, {1, 6, 16, 25, 16, 6, 1}, {1, 7, 22, 40, 40, 22, 7, 1}, {1, 8, 29, 61, 93, 61, 29, 8, 1}, {1, 9, 37, 89, 149, 149, 89, 37, 9, 1}, {1, 10, 46, 125, 233, 371, 233, 125, 46, 10, 1}.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows
Crossrefs
Cf. A140356.
Programs
-
Mathematica
t[n_, k_] = Binomial[n, k] + If[k <= Floor[n/2], Gamma[k + 1], Gamma[n - k + 1]] - 1; Flatten[Table[Table[t[n, k], {k, 0, n}], {n, 0, 10}]]
Formula
T(n,k) = binomial(n, k) + A140356(n, k) - 1 = binomial(n, k) + if(k less than equal floor(n/2), Gamma(k + 1), Gamma(n - k + 1)) - 1.
Extensions
Edited by the OEIS editors, Jun 05 2016
Comments