cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140359 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).

Original entry on oeis.org

1, 1, 6, 11, 26, 51, 106, 211, 426, 851, 1706, 3411, 6826, 13651, 27306, 54611, 109226, 218451, 436906, 873811, 1747626, 3495251, 6990506, 13981011, 27962026, 55924051, 111848106, 223696211, 447392426, 894784851, 1789569706, 3579139411
Offset: 0

Views

Author

Paul Curtz, Jun 24 2008

Keywords

Comments

This is the sequence A(1,1;1,2;3) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010

Crossrefs

Programs

  • Magma
    [(5*2^(n+1) -9 + 5*(-1)^n)/6: n in [0..50]]; // G. C. Greubel, Oct 10 2017
  • Mathematica
    Table[(5*2^(n+1) -9 + 5*(-1)^n)/6, {n, 0, 50}] (* G. C. Greubel, Oct 10 2017 *)
    LinearRecurrence[{2,1,-2},{1,1,6},40] (* Harvey P. Dale, Mar 24 2021 *)
  • PARI
    for(n=0,50, print1((5*2^(n+1) -9 + 5*(-1)^n)/6, ", ")) \\ G. C. Greubel, Oct 10 2017
    

Formula

a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
a(n+1) - a(n) = 5*A001045(n), Jacobsthal numbers.
a(n+1) - 2*a(n) = (-1)^(n+1)* A010685(n).
From R. J. Mathar, Jul 10 2008: (Start)
O.g.f.: (1-x+3*x^2)/((x-1)*(2*x-1)*(1+x)).
a(n) = (5*2^(n+1) - 9 + 5*(-1)^n)/6. (End)
a(n) = a(n-1) + 2*a(n-2) +3, n>1 - Gary Detlefs, Jun 20 2010

Extensions

Extended by R. J. Mathar, Jul 10 2008