cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140404 a(n) = binomial(n+5, 5)*7^n.

Original entry on oeis.org

1, 42, 1029, 19208, 302526, 4235364, 54353838, 652246056, 7419298887, 80787921214, 848273172747, 8636963213424, 85649885199788, 830145041167176, 7886377891088172, 73606193650156272, 676256904160810749, 6126091955339109138, 54794489156088698401, 484498640959100070072
Offset: 0

Views

Author

Zerinvary Lajos, Jun 16 2008

Keywords

Comments

With a different offset, number of n-permutations of 8 objects:r,s,t,u,v,z,x,y with repetition allowed, containing exactly five (5) u's. Example: a(1)=42 because we have
uuuuur, uuuuru, uuuruu, uuruuu, uruuuu, ruuuuu
uuuuus, uuuusu, uuusuu, uusuuu, usuuuu, suuuuu,
uuuuut, uuuutu, uuutuu, uutuuu, utuuuu, tuuuuu,
uuuuuv, uuuuvu, uuuvuu, uuvuuu, uvuuuu, vuuuuu,
uuuuuz, uuuuzu, uuuzuu, uuzuuu, uzuuuu, zuuuuu,
uuuuux, uuuuxu, uuuxuu, uuxuuu, uxuuuu, xuuuuu,
uuuuuy, uuuuyu, uuuyuu, uuyuuu, uyuuuu, yuuuuu.

Crossrefs

Programs

  • Magma
    [7^n* Binomial(n+5, 5): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
    
  • Maple
    seq(binomial(n+5,5)*7^n,n=0..17);
  • Mathematica
    Table[Binomial[n+5,5]7^n,{n,0,20}] (* or *) LinearRecurrence[ {42,-735,6860,-36015,100842,-117649},{1,42,1029,19208,302526,4235364},21] (* Harvey P. Dale, Sep 08 2011 *)
  • PARI
    a(n)=binomial(n+5,5)*7^n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: 1/(1-7*x)^6. - Zerinvary Lajos, Aug 06 2008
a(n) = 42*a(n-1) - 735*a(n-2) + 6860*a(n-3) - 36015*a(n-4) + 100842*a(n-5) - 117649*a(n-6). - Harvey P. Dale, Sep 08 2011
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 45360*log(7/6) - 27965/4.
Sum_{n>=0} (-1)^n/a(n) = 143360*log(8/7) - 229705/12. (End)