A140404 a(n) = binomial(n+5, 5)*7^n.
1, 42, 1029, 19208, 302526, 4235364, 54353838, 652246056, 7419298887, 80787921214, 848273172747, 8636963213424, 85649885199788, 830145041167176, 7886377891088172, 73606193650156272, 676256904160810749, 6126091955339109138, 54794489156088698401, 484498640959100070072
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (42,-735,6860,-36015,100842,-117649).
Programs
-
Magma
[7^n* Binomial(n+5, 5): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
-
Maple
seq(binomial(n+5,5)*7^n,n=0..17);
-
Mathematica
Table[Binomial[n+5,5]7^n,{n,0,20}] (* or *) LinearRecurrence[ {42,-735,6860,-36015,100842,-117649},{1,42,1029,19208,302526,4235364},21] (* Harvey P. Dale, Sep 08 2011 *)
-
PARI
a(n)=binomial(n+5,5)*7^n \\ Charles R Greathouse IV, Oct 07 2015
Formula
G.f.: 1/(1-7*x)^6. - Zerinvary Lajos, Aug 06 2008
a(n) = 42*a(n-1) - 735*a(n-2) + 6860*a(n-3) - 36015*a(n-4) + 100842*a(n-5) - 117649*a(n-6). - Harvey P. Dale, Sep 08 2011
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 45360*log(7/6) - 27965/4.
Sum_{n>=0} (-1)^n/a(n) = 143360*log(8/7) - 229705/12. (End)
Comments