cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140413 a(2n) = A000045(6n) + 1, a(2n+1) = A000045(6n+3) - 1.

Original entry on oeis.org

1, 1, 9, 33, 145, 609, 2585, 10945, 46369, 196417, 832041, 3524577, 14930353, 63245985, 267914297, 1134903169, 4807526977, 20365011073, 86267571273, 365435296161, 1548008755921, 6557470319841, 27777890035289, 117669030460993, 498454011879265, 2111485077978049
Offset: 0

Views

Author

Paul Curtz, Jun 17 2008

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,1,9];; for n in [4..30] do a[n]:=3*a[n-1]+5*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jun 08 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)^2/((1+x)*(1-4*x-x^2)) )); // G. C. Greubel, Jun 08 2019
    
  • Mathematica
    LinearRecurrence[{3,5,1},{1,1,9},30] (* or *) CoefficientList[Series[ (1-x)^2/((1+x)(1-4*x-x^2)),{x,0,30}],x] (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    Vec((1-x)^2/((1+x)*(1-4*x-x^2)) + O(x^30)) \\ Colin Barker, Jun 06 2017
    
  • Sage
    ((1-x)^2/((1+x)*(1-4*x-x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 08 2019
    

Formula

a(n) = A141325(3*n) = (-1)^n + A014445(n).
a(n) = +3*a(n-1) +5*a(n-2) +a(n-3). - R. J. Mathar, Dec 17 2010
G.f.: (1-x)^2 / ( (1+x)*(1-4*x-x^2) ). - R. J. Mathar, Dec 17 2010
a(n) = ((-1)^n + (-(2-sqrt(5))^n + (2+sqrt(5))^n) / sqrt(5)). - Colin Barker, Jun 06 2017
a(n) = -A033887(n) + 2*Sum_{k=0..n} A033887(k)*(-1)^(n-k). - Yomna Bakr and Greg Dresden, Jun 03 2024