A140444 Primes congruent to 1 (mod 14).
29, 43, 71, 113, 127, 197, 211, 239, 281, 337, 379, 421, 449, 463, 491, 547, 617, 631, 659, 673, 701, 743, 757, 827, 883, 911, 953, 967, 1009, 1051, 1093, 1163, 1289, 1303, 1373, 1429, 1471, 1499, 1583, 1597, 1667, 1709, 1723, 1877, 1933, 2003, 2017, 2087
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Jorma K. Merikoski, Pentti Haukkanen, and Timo Tossavainen, The congruence x^n = -a^n (mod m): Solvability and related OEIS sequences, Notes. Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 516-529. See p. 526.
Crossrefs
A090613 gives prime index.
Cf. A090614.
Cf. A131877.
Primes congruent to 1 (mod k): A000040 (k=1), A065091 (k=2), A002476 (k=3 and 6), A002144 (k=4), A030430 (k=5 and 10), this sequence (k=7 and 14), A007519 (k=8), A061237 (k=9 and 18), A141849 (k=11 and 22), A068228 (k=12), A268753 (k=13 and 26), A132230 (k=15 and 30), A094407 (k=16), A129484 (k=17 and 34), A141868 (k=19 and 38), A141881 (k=20), A124826 (k=21 and 42), A212374 (k=23 and 46), A107008 (k=24), A141927 (k=25 and 50), A141948 (k=27 and 54), A093359 (k=28), A141977 (k=29 and 58), A142005 (k=31 and 62), A133870 (k=32).
Programs
-
GAP
Filtered(Filtered([1..2300],n->n mod 14=1),IsPrime); # Muniru A Asiru, Jun 27 2018
-
Magma
[p: p in PrimesUpTo(3000)|p mod 14 in {1}]; // Vincenzo Librandi, Dec 18 2010
-
Maple
select(isprime,select(n->modp(n,14)=1,[$1..2300])); # Muniru A Asiru, Jun 27 2018
-
Mathematica
Select[Prime[Range[500]], Mod[#, 14] == 1 &] (* Harvey P. Dale, Mar 21 2011 *)
-
PARI
is(n)=isprime(n) && n%14==1 \\ Charles R Greathouse IV, Jul 02 2016
Formula
a(n) ~ 6n log n. - Charles R Greathouse IV, Jul 02 2016
Extensions
Simpler definition from N. J. A. Sloane, Jul 11 2008
Comments