A140480 RMS numbers: numbers n such that root mean square of divisors of n is an integer.
1, 7, 41, 239, 287, 1673, 3055, 6665, 9545, 9799, 9855, 21385, 26095, 34697, 46655, 66815, 68593, 68985, 125255, 155287, 182665, 242879, 273265, 380511, 391345, 404055, 421655, 627215, 730145, 814463, 823537, 876785, 1069895, 1087009, 1166399, 1204281, 1256489
Offset: 1
Links
- Giovanni Resta, Table of n, a(n) for n = 1..7430 (terms < 10^13, first 455 terms from T. D. Noe, terms 456..1660 from Donovan Johnson)
- A. S. Fraenkel, Heap games, numeration systems and sequences, arXiv:math/9809074 [math.CO], 1998; Annals of Combinatorics, 2 (1998), 197-210.
- Aviezri S. Fraenkel, On the recurrence f(m+1)= b(m)*f(m)-f(m-1) and applications, Discrete Mathematics 224 (2000), pp. 273-279.
- H. W. Lenstra Jr., Solving the Pell Equation, Notices of the AMS, Vol.49, No.2, Feb. 2002, p.182-192. [_Ctibor O. Zizka_, Aug 30 2008]
- Eric Weisstein's World of Math, Root Mean Square
Crossrefs
Programs
-
Haskell
a140480 n = a140480_list !! (n-1) a140480_list = filter ((== 1) . a010052 . (\x -> a001157 x `div` a000005 x)) a020486_list -- Reinhard Zumkeller, Jan 15 2013
-
Mathematica
rmsQ[n_] := IntegerQ[Sqrt[DivisorSigma[2, n]/DivisorSigma[0, n]]]; m = 160000; sel1 = Select[8*Range[0, m]+1, rmsQ]; sel7 = Select[8*Range[m]-1, rmsQ]; Union[sel1, sel7] (* Jean-François Alcover, Aug 31 2011, after T. D. Noe's comment *) Select[Range[1300000],IntegerQ[RootMeanSquare[Divisors[#]]]&] (* Harvey P. Dale, Mar 24 2016 *)
Extensions
More terms from T. D. Noe and Andrew Weimholt, Jul 01 2008
Comments