A140513 Repeat 2^n n times.
2, 4, 4, 8, 8, 8, 16, 16, 16, 16, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024
Offset: 0
Links
- Reinhard Zumkeller, Rows n = 0..127 of triangle, flattened
- Sajed Haque, Chapter 2.6.2 of Discriminators of Integer Sequences, 2017, See p. 34.
Programs
-
Haskell
a140513 n k = a140513_tabl !! (n-1) !! (k-1) a140513_row n = a140513_tabl !! (n-1) a140513_tabl = iterate (\xs@(x:_) -> map (* 2) (x:xs)) [2] a140513_list = concat a140513_tabl -- Reinhard Zumkeller, Nov 14 2015
-
Mathematica
t={}; Do[r={}; Do[If[k==0||k==n, m=2^n, m=t[[n, k]] + t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t=Flatten[2 t] (* Vincenzo Librandi, Feb 17 2018 *) Table[Table[2^n,n],{n,10}]//Flatten (* Harvey P. Dale, Dec 04 2018 *)
-
Python
from math import isqrt def A140513(n): return 1<<(m:=isqrt(k:=n+1<<1))+(k>m*(m+1)) # Chai Wah Wu, Nov 07 2024
Formula
a(n) = 2*A137688(n).
From Reinhard Zumkeller, Feb 28 2010: (Start)
Seen as a triangle read by rows: T(n,k)=2^n, 1 <= k <= n.
Sum_{n>=0} 1/a(n) = 2. - Amiram Eldar, Aug 16 2022