A003763
Number of (undirected) Hamiltonian cycles on a 2n X 2n square grid of points.
Original entry on oeis.org
1, 6, 1072, 4638576, 467260456608, 1076226888605605706, 56126499620491437281263608, 65882516522625836326159786165530572, 1733926377888966183927790794055670829347983946, 1020460427390768793543026965678152831571073052662428097106
Offset: 1
a(1) = 1 because there is only one such path visiting all nodes of a square.
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
- N. J. A. Sloane, Table of n, a(n) for n = 1..13 (first 11 terms from _Artem M. Karavaev_, Sep 29 2010; a(12) and a(13) from Pettersson, 2014, added by _N. J. A. Sloane_, Jun 05 2015)
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
- J. L. Jacobsen, Exact enumeration of Hamiltonian circuits, walks and chains in two and three dimensions, J. Phys. A: Math. Theor. 40 (2007) 14667-14678.
- Artem M. Karavaev, Hamilton Cycles.
- Ville H. Pettersson, Enumerating Hamiltonian Cycles, The Electronic Journal of Combinatorics, Volume 21, Issue 4, 2014.
- Ville Pettersson, Graph Algorithms for Constructing and Enumerating Cycles and Related Structures, Dissertation, Aalto, Finland, 2015.
- A. Pönitz, Computing invariants in graphs of small bandwidth, Mathematics in Computers and Simulation, 49(1999), 179-191.
- A. Pönitz, Über eine Methode zur Konstruktion... PhD Thesis (2004) C.3.
- T. G. Schmalz, G. E. Hite and D. J. Klein, Compact self-avoiding circuits on two-dimensional lattices, J. Phys. A 17 (1984), 445-453.
- N. J. A. Sloane, Illustration of a(2) = 6.
- Peter Tittmann, Enumeration in graphs: counting Hamiltonian cycles. [Broken link?]
- Peter Tittmann, Enumeration in graphs: counting Hamiltonian cycles. [Backup copy of top page only, on the Internet Archive]
- Eric Weisstein's World of Mathematics, Grid Graph.
- Eric Weisstein's World of Mathematics, Hamiltonian Cycle.
- Ed Wynn, Enumeration of nonisomorphic Hamiltonian cycles on square grid graphs, arXiv preprint arXiv:1402.0545 [math.CO], 2014.
- Index entries for sequences related to graphs, Hamiltonian.
Two more terms from Andre Poenitz [André Pönitz] and Peter Tittmann (poenitz(AT)htwm.de), Mar 03 2003
a(8) from Herman Jamke (hermanjamke(AT)fastmail.fm), Nov 21 2006
a(9) and a(10) from Jesper L. Jacobsen (jesper.jacobsen(AT)u-psud.fr), Dec 12 2007
A209077
Number of Hamiltonian circuits (or self-avoiding rook's tours) on a 2n X 2n grid reduced for symmetry, i.e., where rotations and reflections are not counted as distinct.
Original entry on oeis.org
1, 2, 149, 580717, 58407763266, 134528361351329451, 7015812452562871283559623, 8235314565328229583744138065519908, 216740797236120772990979350241355889872437894, 127557553423846099192878370713500303677609606263171680998
Offset: 1
- Jon Wild, Posting to Sequence Fans Mailing List, Dec 10 2011.
a(5)-a(10) from
Ed Wynn, Feb 05 2014
A140518
Number of simple paths from corner to corner of an n X n grid with king-moves allowed.
Original entry on oeis.org
1, 5, 235, 96371, 447544629, 22132498074021, 10621309947362277575, 50819542770311581606906543, 2460791237088492025876789478191411, 1207644919895971862319430895789323709778193, 5996262208084349429209429097224046573095272337986011
Offset: 1
For example, when n=8 this is the number of ways to move a king from a1 to h8 without occupying any cell twice.
- Donald E. Knuth, The Art of Computer Programming, Vol. 4, fascicle 1, section 7.1.4, p. 117, Addison-Wesley, 2009.
A288033
Number of (undirected) paths in the n X n king graph.
Original entry on oeis.org
0, 30, 5148, 6014812, 57533191444, 4956907379126694, 3954100866385811897908, 29986588563791584765930866780, 2187482261973324160097873804506155572, 1550696105068168200375810546149511240714556526
Offset: 1
A339190
Square array T(n,k), n >= 2, k >= 2, read by antidiagonals, where T(n,k) is the number of (undirected) Hamiltonian cycles on the n X k king graph.
Original entry on oeis.org
3, 4, 4, 8, 16, 8, 16, 120, 120, 16, 32, 744, 2830, 744, 32, 64, 4922, 50354, 50354, 4922, 64, 128, 31904, 1003218, 2462064, 1003218, 31904, 128, 256, 208118, 19380610, 139472532, 139472532, 19380610, 208118, 256, 512, 1354872, 378005474, 7621612496, 22853860116, 7621612496, 378005474, 1354872, 512
Offset: 2
Square array T(n,k) begins:
3, 4, 8, 16, 32, 64, ...
4, 16, 120, 744, 4922, 31904, ...
8, 120, 2830, 50354, 1003218, 19380610, ...
16, 744, 50354, 2462064, 139472532, 7621612496, ...
32, 4922, 1003218, 139472532, 22853860116, 3601249330324, ...
64, 31904, 19380610, 7621612496, 3601249330324, 1622043117414624, ...
-
# Using graphillion
from graphillion import GraphSet
def make_nXk_king_graph(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
if i > 1:
grids.append((i + (j - 1) * k, i + j * k - 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339190(n, k):
universe = make_nXk_king_graph(n, k)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles(is_hamilton=True)
return cycles.len()
print([A339190(j + 2, i - j + 2) for i in range(10 - 1) for j in range(i + 1)])
A234622
Numbers of undirected cycles in the n X n king graph.
Original entry on oeis.org
7, 348, 136597, 545217435, 21964731190911, 9389890985897322572, 41930442683035614068268389, 1912714607714074785106312737308553, 888957501697133413663023517792044869026260, 4209348789084188565760570660849691414465827388642586
Offset: 2
A140521
Number of directed "king tours" on an n X n board.
Original entry on oeis.org
1, 6, 32, 5660, 4924128, 45707720232, 3244086234829248, 1923484178952564643368
Offset: 1
- Donald E. Knuth, The Art of Computer Programming, Vol. 4, fascicle 1, section 7.1.4, p. 117, Addison-Wesley, 2009.
A339854
Number of Hamiltonian circuits within parallelograms of size n X n on the triangular lattice.
Original entry on oeis.org
1, 4, 80, 7104, 3292184, 6523266332, 56203566442908, 2176852129116199068, 373334515946952014204102, 281931891850296665963970600460, 939652851372937937187518231503848142, 13807942929878598929190143960742601141566220, 893498265685263112931409501489577970162598024007690
Offset: 2
a(2) = 1:
*---*
/ /
*---*
a(3) = 4:
* *---* *---*---*
/ \ / / \ /
* * * *---* *
/ / / /
*---*---* *---*---*
*---*---* *---*---*
/ / / /
* * * * *---*
/ / \ / / \
*---* * *---*---*
More terms from
Ed Wynn, Jun 28 2023
A361171
Number of chordless cycles in the n X n king graph.
Original entry on oeis.org
0, 0, 1, 13, 197, 4729, 156806, 7035482, 505265569, 82612843683, 33651820752580, 23922790371389972, 25614853328191562332, 43322613720440154974138, 128405885225433787867253690, 738840753928503040569961869076, 8481241718402438554921627740308746, 179685856472407342498054958799766397100
Offset: 1
A383154
The number of 2n-by-2n fers-wazir tours.
Original entry on oeis.org
2, 2, 22, 1620, 882130, 3465050546
Offset: 1
For n=2 the a(2) = 2 solutions are transposes of each other:
.
0-f 4-3 0 e-d b
X X |X X|
e 1-2 5 f 1 a c
| | | |
d a-9 6 4 2 9 7
X X |X X|
b-c 7-8 3 5-6 8
- D. E. Knuth, Hamiltonian paths and cycles, Section 7.2.2.4 of The Art of Computer Programming (to appear).
Showing 1-10 of 10 results.
Comments