cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A140518 Number of simple paths from corner to corner of an n X n grid with king-moves allowed.

Original entry on oeis.org

1, 5, 235, 96371, 447544629, 22132498074021, 10621309947362277575, 50819542770311581606906543, 2460791237088492025876789478191411, 1207644919895971862319430895789323709778193, 5996262208084349429209429097224046573095272337986011
Offset: 1

Views

Author

Don Knuth, Jul 26 2008

Keywords

Comments

This graph is the "strong product" of P_n with P_n, where P_n is a path of length n. Sequence A007764 is what we get when we restrict ourselves to rook moves of unit length.
Computed using ZDDs (ZDD = "reduced, order, zero-suppressed binary decision diagram").

Examples

			For example, when n=8 this is the number of ways to move a king from a1 to h8 without occupying any cell twice.
		

References

  • Donald E. Knuth, The Art of Computer Programming, Vol. 4, fascicle 1, section 7.1.4, p. 117, Addison-Wesley, 2009.

Crossrefs

Main diagonal of A329118.
Cf. A220638 (Hosoya index).

Extensions

a(9)-a(11) from Andrew Howroyd, Apr 07 2016

A288033 Number of (undirected) paths in the n X n king graph.

Original entry on oeis.org

0, 30, 5148, 6014812, 57533191444, 4956907379126694, 3954100866385811897908, 29986588563791584765930866780, 2187482261973324160097873804506155572, 1550696105068168200375810546149511240714556526
Offset: 1

Views

Author

Eric W. Weisstein, Jun 04 2017

Keywords

Comments

Paths of length zero are not counted here. - Andrew Howroyd, Jun 10 2017

Crossrefs

Extensions

a(5)-a(10) from Andrew Howroyd, Jun 10 2017

A339098 Square array T(n,k), n >= 2, k >= 2, read by antidiagonals, where T(n,k) is the number of (undirected) cycles on the n X k king graph.

Original entry on oeis.org

7, 30, 30, 85, 348, 85, 204, 3459, 3459, 204, 451, 33145, 136597, 33145, 451, 954, 316164, 4847163, 4847163, 316164, 954, 1969, 3013590, 171903334, 545217435, 171903334, 3013590, 1969, 4008, 28722567, 6109759868, 61575093671, 61575093671, 6109759868, 28722567, 4008
Offset: 2

Views

Author

Seiichi Manyama, Nov 27 2020

Keywords

Examples

			Square array T(n,k) begins:
    7,     30,        85,         204,            451, ...
   30,    348,      3459,       33145,         316164, ...
   85,   3459,    136597,     4847163,      171903334, ...
  204,  33145,   4847163,   545217435,    61575093671, ...
  451, 316164, 171903334, 61575093671, 21964731190911, ...
		

Crossrefs

Rows and columns 2..5 give A339196, A339197, A339198, A339199.
Main diagonal gives A234622.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_nXk_king_graph(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
                if i > 1:
                    grids.append((i + (j - 1) * k, i + j * k - 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A339098(n, k):
        universe = make_nXk_king_graph(n, k)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        return cycles.len()
    print([A339098(j + 2, i - j + 2) for i in range(9 - 1) for j in range(i + 1)])

Formula

T(n,k) = T(k,n).

A220638 Number of ways to reciprocally link elements of an n X n array either to themselves or to exactly one king-move neighbor.

Original entry on oeis.org

1, 1, 10, 369, 92801, 128171936, 1040315976961, 48590896359378961, 13140746227808545282304, 20540255065209806005525289313, 185661218973084382181156348510614065, 9703072851259276652446200332793680010752000, 2932144456272256572796083896528773941130429279461761
Offset: 0

Views

Author

R. H. Hardin, Dec 17 2012

Keywords

Comments

Main diagonal of A220644.
Row sums of A243424. - Alois P. Heinz, Jun 04 2014
Number of matchings (i.e., Hosoya index) in the n X n kings graph. - Andrew Howroyd, Apr 07 2016

Examples

			Some solutions for n=3 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)
..8..6..4....0..9..7....6..4..0....0..6..4....9..0..8....6..4..0....8..0..0
..2..7..0....9..3..1....8..6..4....6..4..7....0..1..2....0..0..8....2..6..4
..3..6..4....0..1..0....2..0..0....0..3..0....0..0..0....0..0..2....6..4..0
		

Crossrefs

Cf. A239273 (perfect matchings), A063443 (independent vertex sets), A234622 (cycles).

Programs

  • Maple
    b:= proc(n, l) option remember; local d, f, k;
          d:= nops(l)/2; f:=false;
          if n=0 then 1
        elif l[1..d]=[f$d] then b(n-1, [l[d+1..2*d][], true$d])
        else for k to d while not l[k] do od; b(n, subsop(k=f, l))+
             `if`(k1 and l[k+d+1],
                                b(n, subsop(k=f, k+d+1=f, l)), 0)+
             `if`(k>1 and n>1 and l[k+d-1],
                                b(n, subsop(k=f, k+d-1=f, l)), 0)+
             `if`(n>1 and l[k+d], b(n, subsop(k=f, k+d=f, l)), 0)+
             `if`(k b(n, [true$(n*2)]):
    seq(a(n), n=0..10);  # Alois P. Heinz, Jun 03 2014
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{d, f, k}, d = Length[l]/2; f = False; Which[ n == 0, 1, l[[1 ;; d]] == Array[f&, d], b[n - 1, Join [l[[d+1 ;; 2d]], Array[True&, d]]], True, For[k = 1, !l[[k]], k++]; b[n, ReplacePart[l, k -> f]] + If[k < d && n > 1 && l[[k + d + 1]], b[n, ReplacePart[l, k | k + d + 1 -> f]], 0] + If[k > 1 && n > 1 && l[[k + d - 1]], b[n, ReplacePart[l, k | k + d - 1 -> f]], 0] + If[n > 1 && l[[k + d]], b[n, ReplacePart[l, k | k + d -> f]], 0] + If[k < d && l[[k + 1]], b[n, ReplacePart[l, k | k + 1 -> f]], 0]]]; a[n_] := b[n, Array[True&, 2n]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 12}] (* Jean-François Alcover, Feb 01 2017, after Alois P. Heinz *)

Extensions

a(10)-a(12) from Alois P. Heinz, Jun 03 2014

A361171 Number of chordless cycles in the n X n king graph.

Original entry on oeis.org

0, 0, 1, 13, 197, 4729, 156806, 7035482, 505265569, 82612843683, 33651820752580, 23922790371389972, 25614853328191562332, 43322613720440154974138, 128405885225433787867253690, 738840753928503040569961869076, 8481241718402438554921627740308746, 179685856472407342498054958799766397100
Offset: 1

Views

Author

Eric W. Weisstein, Mar 03 2023

Keywords

Comments

Using the convention that chordless cycles have length >= 4.

Crossrefs

Extensions

a(7)-a(18) from Andrew Howroyd, Mar 03 2023
Showing 1-5 of 5 results.