A140680 a(n) = n*(3*n+16).
0, 19, 44, 75, 112, 155, 204, 259, 320, 387, 460, 539, 624, 715, 812, 915, 1024, 1139, 1260, 1387, 1520, 1659, 1804, 1955, 2112, 2275, 2444, 2619, 2800, 2987, 3180, 3379, 3584, 3795, 4012, 4235, 4464, 4699, 4940, 5187, 5440, 5699
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
a[n_]:=Sum[6*i+13, {i, 1, n}]; (* Vladimir Joseph Stephan Orlovsky, Dec 04 2008 *) Table[n(3n+16),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,19,44},50] (* Harvey P. Dale, Aug 23 2020 *)
-
PARI
a(n)=n*(3*n+16) \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 3*n^2 + 16*n.
a(n) = 6*n + a(n-1) + 13 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
E.g.f.: (3*x^2 + 19*x)*exp(x). - G. C. Greubel, Jul 20 2017