cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A132371 a(n) = n! - Sum_{j=1..n-1} j!.

Original entry on oeis.org

1, 1, 3, 15, 87, 567, 4167, 34407, 316647, 3219687, 35878887, 435046887, 5704064487, 80428314087, 1213746099687, 19521187251687, 333363035571687, 6024361885107687, 114864714882483687, 2304476522241459687, 48529614677597619687, 1070348458111786419687
Offset: 1

Views

Author

Ben Branman, Nov 09 2007

Keywords

Crossrefs

Programs

  • Magma
    A132371:= func< n | n eq 1 select 1 else  Factorial(n) - (&+[Factorial(j): j in [1..n-1]]) >;
    [A132371(n): n in [1..30]]; // G. C. Greubel, May 02 2021
    
  • Maple
    seq(factorial(n)-(sum(factorial(j),j=1..n-1)),n=1..22); # Emeric Deutsch, May 26 2008
  • Mathematica
    With[{fctrls=Range[30]!},Table[fctrls[[n]]-Total[Take[fctrls, n-1]], {n,30}]] (* Harvey P. Dale, Feb 27 2012 *)
    Table[n! -Sum[j!, {j, n-1}], {n, 30}] (* G. C. Greubel, May 02 2021 *)
  • Sage
    [factorial(n) - sum(factorial(j) for j in (1..n-1)) for n in (1..30)] # G. C. Greubel, May 02 2021

Formula

From G. C. Greubel, May 02 2021: (Start)
a(n) = A000142(n) - A007489(n-1).
a(n) = n! - A003422(n) + 1. (End)

Extensions

Corrected and extended by N. J. A. Sloane, Nov 11 2007
Better definition from Emeric Deutsch, May 26 2008

A140710 Number of maximal initial consecutive columns ending at the same level, summed over all deco polyominoes of height n.

Original entry on oeis.org

1, 3, 10, 38, 172, 944, 6208, 47696, 417952, 4101824, 44491648, 528068096, 6804155392, 94559581184, 1409615239168, 22434345998336, 379633330204672, 6805952938041344, 128854632579186688, 2568966172926181376
Offset: 1

Views

Author

Emeric Deutsch, Jun 03 2008

Keywords

Comments

A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

Examples

			a(3)=10 because the 6 deco polyominoes of height 3 have columns ending at levels 3, 22, 12, 111, 22, 122, respectively and 1+2+1+3+2+1=10.
		

Crossrefs

Row sums of A227550/2.

Programs

  • Magma
    [2^(n-1)*(&+[j*Factorial(j)/2^j: j in [1..n-1]]): n in [1..30]]; // G. C. Greubel, May 02 2021
    
  • Maple
    a:=proc(n) options operator, arrow: 2^(n-1)*(1+sum(j^2*factorial(j-1)/2^j, j= 1..n-1)) end proc: seq(a(n),n=1..20);
  • Mathematica
    Table[2^(n-1)*(1 + Sum[j*j!/2^j, {j,n-1}]), {n,30}] (* G. C. Greubel, May 02 2021 *)
  • Sage
    [2^(n-1)*sum(j*factorial(j)/2^j for j in (1..n-1)) for n in (1..30)] # G. C. Greubel, May 02 2021

Formula

a(n) = 2^(n-1) * (1 + Sum_{j=1..n-1} j*j!/2^j ).
a(n) = (n-1)!*(n-1) + 2*a(n-1) with a(1) = 1.
a(n) = Sum_{k=1..n} k*A140709(n,k).
(1 + x + 2*x^2 + 4*x^3 + 8*x^4 + ...)*(1 + 2*x + 6*x^2 + 24*x^3 + 120*x^4 + ...) = (1 + 3*x + 10*x^2 + 38*x^3 + 172*x^4 + ...) which is (Sum_{n>=0} A011782(n)*x^n) * (Sum_{n>=0} A000142(n+1)*x^n) = Sum_{n>=0} a(n+1)*x^n. - Gary W. Adamson, Feb 24 2012
a(n) = Sum_{j=0..n} (j+1)!*A011782(n-j) = (n+1)! + Sum_{j=0..n-1} 2^(n-k-1)*(j+1)!. - G. C. Greubel, May 03 2021
D-finite with recurrence a(n) +(-n-3)*a(n-1) +3*n*a(n-2) +2*(-n+2)*a(n-3)=0. - R. J. Mathar, Jul 26 2022
Showing 1-2 of 2 results.