cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140802 a(n) = binomial(n+3, 3)*8^n.

Original entry on oeis.org

1, 32, 640, 10240, 143360, 1835008, 22020096, 251658240, 2768240640, 29527900160, 307090161664, 3126736191488, 31267361914880, 307863255777280, 2990671627550720, 28710447624486912, 272749252432625664, 2567051787601182720, 23959150017611038720
Offset: 0

Views

Author

Zerinvary Lajos, Jul 15 2008

Keywords

Comments

With a different offset, number of n-permutations (n>=3) of 9 objects: r, s, t, u, v, w, z, x, y with repetition allowed, containing exactly (3) three u's.
Example:
(n=4) a(1)=32
uuur, uuru, uruu, ruuu,
uuus, uusu, usuu, suuu,
uuut, uutu, utuu, tuuu,
uuuv, uuvu, uvuu, vuuu,
uuuw, uuwu, uwuu, wuuu,
uuuz, uuzu, uzuu, zuuu,
uuux, uuxu, uxuu, xuuu,
uuuy, uuyu, uyuu, yuuu

Programs

  • Magma
    [8^n* Binomial(n+3, 3): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
  • Maple
    seq(binomial(n+3,3)*8^n,n=0..19);
  • Mathematica
    nn = 21; Drop[Range[0, nn]!CoefficientList[Series[x^3/3! Exp[8x],{x, 0, nn}], x], 3] (* Geoffrey Critzer, Oct 03 2013 *)

Formula

G.f.: 1/(1-8*x)^4. - Vincenzo Librandi, Oct 16 2011
With offset = 3, e.g.f.: exp(8x)*x^3/3!. - Geoffrey Critzer, Oct 03 2013
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 1176*log(8/7) - 156.
Sum_{n>=0} (-1)^n/a(n) = 1944*log(9/8) - 228. (End)