cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A053107 Expansion of 1/(1-8*x)^8.

Original entry on oeis.org

1, 64, 2304, 61440, 1351680, 25952256, 449839104, 7197425664, 107961384960, 1535450808320, 20882130993152, 273366078455808, 3462636993773568, 42617070692597760, 511404848311173120, 6000483553517764608, 69005560865454292992, 779356922715719073792
Offset: 0

Views

Author

Keywords

Comments

With a different offset, number of n-permutations (n>=7) of 9 objects: p, r, s, t, u, v, z, x, y with repetition allowed, containing exactly 7 u's. - Zerinvary Lajos, Feb 11 2010

Crossrefs

Programs

  • Magma
    [8^n* Binomial(n+7, 7): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
    
  • Mathematica
    Table[Binomial[n + 7, 7]*8^n, {n, 0, 20}] (* Zerinvary Lajos, Feb 11 2010 *)
    CoefficientList[Series[1/(1-8x)^8,{x,0,20}],x] (* or *) LinearRecurrence[ {64,-1792,28672,-286720,1835008,-7340032,16777216,-16777216},{1,64,2304,61440,1351680,25952256,449839104,7197425664},20] (* Harvey P. Dale, Jul 19 2018 *)
  • PARI
    vector(30, n, n--; 8^n*binomial(n+7,7)) \\ G. C. Greubel, Aug 16 2018
  • Sage
    [lucas_number2(n, 8, 0)*binomial(n,7)/8^7 for n in range(7, 22)] # Zerinvary Lajos, Mar 13 2009
    

Formula

a(n) = 8^n*binomial(n+7, 7).
G.f.: 1/(1-8*x)^8.

Extensions

More terms from Harvey P. Dale, Jul 19 2018

A128967 a(n) = (n^3-n)*8^n.

Original entry on oeis.org

0, 384, 12288, 245760, 3932160, 55050240, 704643072, 8455716864, 96636764160, 1063004405760, 11338713661440, 117922622078976, 1200666697531392, 12006666975313920, 118219490218475520, 1148417904979476480, 11024811887802974208, 104735712934128254976
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3 - n)*8^n: n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
  • Mathematica
    LinearRecurrence[{32, -384, 2048, -4096}, {0, 384, 12288, 245760}, 30] (* Vincenzo Librandi, Feb 11 2013 *)

Formula

From R. J. Mathar, Dec 19 2008: (Start)
G.f.: 384x^2/(1-8x)^4.
a(n) = 384*A140802(n-2). (End)
a(n) = 32*a(n-1) - 384*a(n-2) + 2048*a(n-3) - 4096*a(n-4). - Vincenzo Librandi, Feb 11 2013
From Amiram Eldar, Oct 02 2022: (Start)
a(n) = A007531(n+1)*A001018(n).
Sum_{n>=2} 1/a(n) = (49/16)*log(8/7) - 13/32.
Sum_{n>=2} (-1)^n/a(n) = (81/16)*log(9/8) - 19/32. (End)

Extensions

Corrected the offset. - Mohammad K. Azarian, Nov 20 2008

A111636 Triangle read by rows: T(n,k) (0<=k<=n) is the number of labeled graphs having k blue nodes and n-k green ones and only nodes of different colors can be joined by an edge.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 96, 32, 1, 1, 80, 640, 640, 80, 1, 1, 192, 3840, 10240, 3840, 192, 1, 1, 448, 21504, 143360, 143360, 21504, 448, 1, 1, 1024, 114688, 1835008, 4587520, 1835008, 114688, 1024, 1, 1, 2304, 589824, 22020096, 132120576, 132120576, 22020096, 589824, 2304, 1
Offset: 0

Views

Author

Emeric Deutsch, Aug 09 2005

Keywords

Comments

Row sums yield A047863. T(2*n,n) = A111637(n). T(n,1) = A001787(n).

Examples

			T(2,1)=4 because we have B G, B--G, G B and G--B, where B (G) stands for a blue (green) node and -- denotes an edge.
Triangle starts:
  1;
  1,  1;
  1,  4,  1;
  1, 12, 12,  1;
  1, 32, 96, 32, 1;
  ...
		

References

  • H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 88, Eq. 3.11.2.

Crossrefs

Cf. A134530 (matrix log), A134531.
Cf. A000684, A011266, A038845, A140802, A224069 (matrix inverse).

Programs

  • Maple
    T:=(n,k)->binomial(n,k)*2^(k*(n-k)): for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    nn=6;f[x_,y_]:=Sum[Exp[x 2^n](y x)^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[f[x,y],{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Sep 07 2013 *)

Formula

T(n, k)=2^[k(n-k)]*C(n, k).
Matrix log yields triangle A134530, where A134530(n,k) = A134531(n-k)*(2^k)^(n-k)*C(n,k). - Paul D. Hanna, Nov 11 2007
From Peter Bala, Aug 13 2012: (Start)
Let f(n) = n!*2^binomial(n,2) = A011266(n). Then T(n,k) = f(n)/(f(k)*f(n-k)).
E.g.f.: Sum_{n >= 0} exp(2^n*t*x)*x^n/n! = 1 + (1+t)*x + (1+4*t+t^2)*x^2/2! + ....
O.g.f.: Sum_{n >= 0} x^n/(1-2^n*t*x)^(n+1) = 1 + (1+t)*x + (1+4*t+t^2)*x^2 + .... O.g.f. for column k: 1/(1-2^k*x)^(k+1).
Recurrence equation: T(n,k) = 2^k*T(n-1,k) + 2^(n-k)*T(n-1,k-1).
Column k = 2: A038845. Column k = 3: A140802. Sum_{k = 0..n} k*T(n,k) = n*A000684(n). (End)
From Peter Bala, Apr 09 2013: (Start)
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + .... Then a generating function for this sequence is E(z)*E(x*z) = 1 + (1 + x)*z + (1 + 4*x + x^2)*z^2/(2!*2) + (1 + 12*x + 12*x^2 + x^3)*z^3/(3!*2^3) + .... Cf. Pascal's triangle A007318 with an e.g.f. of exp(z)*exp(x*z).
This is a generalized Riordan array (E(x), x) with respect to the sequence n!*2^C(n,2), as defined by Wang and Wang.
The n-th power of this triangle has a generating function E(z)^n*E(x*z). See A224069 for the inverse array (n = -1).
The n-th row is a log-concave sequence and hence unimodal.
The row polynomials satisfy the recurrence equation R(n+1,x) = 2^n*x*R(n,x/2) + R(n,2*x) with R(0,x) = 1, as well as R'(n,2*x) = n*2^(n-1)*R(n-1,x) (the ' denotes differentiation w.r.t. x). The row polynomials appear to have only real zeros.
Sum_{k = 0..n} (-1)^k*T(2*n+1,k) = 0;
Sum_{k = 0..n} (-1)^k*2^k*T(2*n,k) = 0;
Sum_{k = 0..n} 2^k*T(n,k) = A000684(n). (End)
T(n,k+1) = Product_{i=0..k} (T(n-i,1)/T(i+1,1)) for 0 <= k < n. - Werner Schulte, Nov 13 2018

A173155 a(n) = binomial(n + 5, 5) * 8^n.

Original entry on oeis.org

1, 48, 1344, 28672, 516096, 8257536, 121110528, 1660944384, 21592276992, 268703891456, 3224446697472, 37520834297856, 425236122042368, 4710307813392384, 51140484831117312, 545498504865251328, 5727734301085138944, 59298896293587320832, 606166495445559279616
Offset: 0

Views

Author

Zerinvary Lajos, Feb 11 2010

Keywords

Comments

With a different offset, number of n-permutations (n>=5) of 9 objects: p, r, s, t, u, v, z, x, y with repetition allowed, containing exactly five (5) u's.

Crossrefs

Programs

  • Magma
    [8^n* Binomial(n+5, 5): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
  • Mathematica
    Table[Binomial[n + 5, 5]*8^n, {n, 0, 20}]

Formula

a(n) = C(n + 5, 5)*8^n, n>=0.
G.f.: 1/(1-8*x)^6. - Vincenzo Librandi, Oct 16 2011
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 96040*log(8/7) - 38470/3.
Sum_{n>=0} (-1)^n/a(n) = 262440*log(9/8) - 30910. (End)

A172510 a(n) = binomial(n + 4, 4) * 8^n.

Original entry on oeis.org

1, 40, 960, 17920, 286720, 4128768, 55050240, 692060160, 8304721920, 95965675520, 1074815565824, 11725260718080, 125069447659520, 1308418837053440, 13458022323978240, 136374626216312832, 1363746262163128320, 13477021884906209280, 131775325096860712960
Offset: 0

Views

Author

Zerinvary Lajos, Feb 05 2010

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n + 4, 4)*8^n: n in [0..30]]; // Vincenzo Librandi, Jun 06 2011
    
  • Mathematica
    Table[Binomial[n + 4, 4]*8^n, {n, 0, 25}]
  • PARI
    Vec(1 / (1-8*x)^5 + O(x^30)) \\ Colin Barker, Jul 24 2017

Formula

G.f.: 1 / (1-8*x)^5. - R. J. Mathar, Feb 11 2010
a(n) = (8^(-1 + n)*(1 + n)*(2 + n)*(3 + n)*(4 + n)) / 3. - Colin Barker, Jul 24 2017
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 4400/3 - 10976*log(8/7).
Sum_{n>=0} (-1)^n/a(n) = 23328*log(9/8) - 8240/3. (End)

A196280 a(n) = binomial(n+9, 9)*8^n.

Original entry on oeis.org

1, 80, 3520, 112640, 2928640, 65601536, 1312030720, 23991418880, 407854120960, 6525665935360, 99190122217472, 1442765414072320, 20198715797012480, 273459536944168960, 3594039628409077760, 46003707243636195328, 575046340545452441600, 7035861107850241638400
Offset: 0

Views

Author

Vincenzo Librandi, Oct 13 2011

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n+9, 9)*8^n: n in [0..20]];
  • Mathematica
    Table[Binomial[n+9,9]8^n,{n,0,20}] (* or *) LinearRecurrence[{80,-2880,61440,-860160,8257536,-55050240,251658240,-754974720,1342177280,-1073741824},{1,80,3520,112640,2928640,65601536,1312030720,23991418880,407854120960,6525665935360},20] (* Harvey P. Dale, May 13 2017 *)

Formula

a(n) = C(n+9,9)*8^n.
G.f.: 1 / (8*x-1)^10 . - R. J. Mathar, Oct 13 2011
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=0} 1/a(n) = 415065672*log(8/7) - 277121481/5.
Sum_{n>=0} (-1)^n/a(n) = 3099363912*log(9/8) - 12776837121/35. (End)

A317028 Triangle read by rows: T(0,0) = 1; T(n,k) = 8 * T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 8, 64, 1, 512, 16, 4096, 192, 1, 32768, 2048, 24, 262144, 20480, 384, 1, 2097152, 196608, 5120, 32, 16777216, 1835008, 61440, 640, 1, 134217728, 16777216, 688128, 10240, 40, 1073741824, 150994944, 7340032, 143360, 960, 1, 8589934592, 1342177280, 75497472, 1835008, 17920, 48
Offset: 0

Views

Author

Zagros Lalo, Jul 19 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013615 ((1+8*x)^n) and along skew diagonals pointing top-right in center-justified triangle given in A038279 ((8+x)^n).
The coefficients in the expansion of 1/(1-8x-x^2) are given by the sequence generated by the row sums.
The row sums are Denominators of continued fraction convergents to sqrt(17), see A041025.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 8.12310562561766054982... (a metallic mean), when n approaches infinity (see A176458: (4+sqrt(17))).

Examples

			Triangle begins:
1;
8;
64, 1;
512, 16;
4096, 192, 1;
32768, 2048, 24;
262144, 20480, 384, 1;
2097152, 196608, 5120, 32;
16777216, 1835008, 61440, 640, 1;
134217728, 16777216, 688128, 10240, 40;
1073741824, 150994944, 7340032, 143360, 960, 1;
8589934592, 1342177280, 75497472, 1835008, 17920, 48;
68719476736, 11811160064, 754974720, 22020096, 286720, 1344, 1;
549755813888, 103079215104, 7381975040, 251658240, 4128768, 28672, 56;
4398046511104, 893353197568, 70866960384, 2768240640, 55050240, 516096, 1792, 1;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, Pages 70, 98

Crossrefs

Row sums give A041025.
Cf. A001018 (column 0), A053539 (column 1), A081138 (column 2), A140802 (column 3), A172510 (column 4).

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 8 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
  • PARI
    T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 8*T(n-1, k)+T(n-2, k-1)));
    tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018

A197321 a(n) = binomial(n+10, 10)*8^n.

Original entry on oeis.org

1, 88, 4224, 146432, 4100096, 98402304, 2099249152, 40785412096, 734137417728, 12398765277184, 198380244434944, 3029807369551872, 44437174753427456, 628956934971588608, 8625695108181786624, 115009268109090488320, 1495120485418176348160, 18996824991195652423680
Offset: 0

Views

Author

Vincenzo Librandi, Oct 15 2011

Keywords

Crossrefs

Programs

  • Magma
    [8^n*Binomial(n+10, 10): n in [0..20]]
  • Mathematica
    Table[Binomial[n+10,10]8^n,{n,0,20}] (* Harvey P. Dale, Mar 05 2012 *)

Formula

a(n) = 8^n*C(n+10, 10).
G.f.: 1/(1-8*x)^11.
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=0} 1/a(n) = 3879700814/9 - 3228288560*log(8/7).
Sum_{n>=0} (-1)^n/a(n) = 30993639120*log(9/8) - 229983068738/63. (End)
Showing 1-8 of 8 results.