A053107
Expansion of 1/(1-8*x)^8.
Original entry on oeis.org
1, 64, 2304, 61440, 1351680, 25952256, 449839104, 7197425664, 107961384960, 1535450808320, 20882130993152, 273366078455808, 3462636993773568, 42617070692597760, 511404848311173120, 6000483553517764608, 69005560865454292992, 779356922715719073792
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (64, -1792, 28672, -286720, 1835008, -7340032, 16777216, -16777216).
-
[8^n* Binomial(n+7, 7): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
-
Table[Binomial[n + 7, 7]*8^n, {n, 0, 20}] (* Zerinvary Lajos, Feb 11 2010 *)
CoefficientList[Series[1/(1-8x)^8,{x,0,20}],x] (* or *) LinearRecurrence[ {64,-1792,28672,-286720,1835008,-7340032,16777216,-16777216},{1,64,2304,61440,1351680,25952256,449839104,7197425664},20] (* Harvey P. Dale, Jul 19 2018 *)
-
vector(30, n, n--; 8^n*binomial(n+7,7)) \\ G. C. Greubel, Aug 16 2018
-
[lucas_number2(n, 8, 0)*binomial(n,7)/8^7 for n in range(7, 22)] # Zerinvary Lajos, Mar 13 2009
A128967
a(n) = (n^3-n)*8^n.
Original entry on oeis.org
0, 384, 12288, 245760, 3932160, 55050240, 704643072, 8455716864, 96636764160, 1063004405760, 11338713661440, 117922622078976, 1200666697531392, 12006666975313920, 118219490218475520, 1148417904979476480, 11024811887802974208, 104735712934128254976
Offset: 1
-
[(n^3 - n)*8^n: n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
-
LinearRecurrence[{32, -384, 2048, -4096}, {0, 384, 12288, 245760}, 30] (* Vincenzo Librandi, Feb 11 2013 *)
A111636
Triangle read by rows: T(n,k) (0<=k<=n) is the number of labeled graphs having k blue nodes and n-k green ones and only nodes of different colors can be joined by an edge.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 96, 32, 1, 1, 80, 640, 640, 80, 1, 1, 192, 3840, 10240, 3840, 192, 1, 1, 448, 21504, 143360, 143360, 21504, 448, 1, 1, 1024, 114688, 1835008, 4587520, 1835008, 114688, 1024, 1, 1, 2304, 589824, 22020096, 132120576, 132120576, 22020096, 589824, 2304, 1
Offset: 0
T(2,1)=4 because we have B G, B--G, G B and G--B, where B (G) stands for a blue (green) node and -- denotes an edge.
Triangle starts:
1;
1, 1;
1, 4, 1;
1, 12, 12, 1;
1, 32, 96, 32, 1;
...
- H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 88, Eq. 3.11.2.
- S. R. Finch, Bipartite, k-colorable and k-colored graphs
- S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- W. Wang and T. Wang, Generalized Riordan array, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
-
T:=(n,k)->binomial(n,k)*2^(k*(n-k)): for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
nn=6;f[x_,y_]:=Sum[Exp[x 2^n](y x)^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[f[x,y],{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Sep 07 2013 *)
A173155
a(n) = binomial(n + 5, 5) * 8^n.
Original entry on oeis.org
1, 48, 1344, 28672, 516096, 8257536, 121110528, 1660944384, 21592276992, 268703891456, 3224446697472, 37520834297856, 425236122042368, 4710307813392384, 51140484831117312, 545498504865251328, 5727734301085138944, 59298896293587320832, 606166495445559279616
Offset: 0
-
[8^n* Binomial(n+5, 5): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
-
Table[Binomial[n + 5, 5]*8^n, {n, 0, 20}]
A172510
a(n) = binomial(n + 4, 4) * 8^n.
Original entry on oeis.org
1, 40, 960, 17920, 286720, 4128768, 55050240, 692060160, 8304721920, 95965675520, 1074815565824, 11725260718080, 125069447659520, 1308418837053440, 13458022323978240, 136374626216312832, 1363746262163128320, 13477021884906209280, 131775325096860712960
Offset: 0
-
[Binomial(n + 4, 4)*8^n: n in [0..30]]; // Vincenzo Librandi, Jun 06 2011
-
Table[Binomial[n + 4, 4]*8^n, {n, 0, 25}]
-
Vec(1 / (1-8*x)^5 + O(x^30)) \\ Colin Barker, Jul 24 2017
A196280
a(n) = binomial(n+9, 9)*8^n.
Original entry on oeis.org
1, 80, 3520, 112640, 2928640, 65601536, 1312030720, 23991418880, 407854120960, 6525665935360, 99190122217472, 1442765414072320, 20198715797012480, 273459536944168960, 3594039628409077760, 46003707243636195328, 575046340545452441600, 7035861107850241638400
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (80,-2880,61440,-860160,8257536,-55050240,251658240,-754974720,1342177280,-1073741824).
-
[Binomial(n+9, 9)*8^n: n in [0..20]];
-
Table[Binomial[n+9,9]8^n,{n,0,20}] (* or *) LinearRecurrence[{80,-2880,61440,-860160,8257536,-55050240,251658240,-754974720,1342177280,-1073741824},{1,80,3520,112640,2928640,65601536,1312030720,23991418880,407854120960,6525665935360},20] (* Harvey P. Dale, May 13 2017 *)
A317028
Triangle read by rows: T(0,0) = 1; T(n,k) = 8 * T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 8, 64, 1, 512, 16, 4096, 192, 1, 32768, 2048, 24, 262144, 20480, 384, 1, 2097152, 196608, 5120, 32, 16777216, 1835008, 61440, 640, 1, 134217728, 16777216, 688128, 10240, 40, 1073741824, 150994944, 7340032, 143360, 960, 1, 8589934592, 1342177280, 75497472, 1835008, 17920, 48
Offset: 0
Triangle begins:
1;
8;
64, 1;
512, 16;
4096, 192, 1;
32768, 2048, 24;
262144, 20480, 384, 1;
2097152, 196608, 5120, 32;
16777216, 1835008, 61440, 640, 1;
134217728, 16777216, 688128, 10240, 40;
1073741824, 150994944, 7340032, 143360, 960, 1;
8589934592, 1342177280, 75497472, 1835008, 17920, 48;
68719476736, 11811160064, 754974720, 22020096, 286720, 1344, 1;
549755813888, 103079215104, 7381975040, 251658240, 4128768, 28672, 56;
4398046511104, 893353197568, 70866960384, 2768240640, 55050240, 516096, 1792, 1;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, Pages 70, 98
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 8 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
-
T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 8*T(n-1, k)+T(n-2, k-1)));
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
A197321
a(n) = binomial(n+10, 10)*8^n.
Original entry on oeis.org
1, 88, 4224, 146432, 4100096, 98402304, 2099249152, 40785412096, 734137417728, 12398765277184, 198380244434944, 3029807369551872, 44437174753427456, 628956934971588608, 8625695108181786624, 115009268109090488320, 1495120485418176348160, 18996824991195652423680
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (88,-3520,84480,-1351680,15138816,-121110528,692060160,-2768240640,7381975040,-11811160064,8589934592).
-
[8^n*Binomial(n+10, 10): n in [0..20]]
-
Table[Binomial[n+10,10]8^n,{n,0,20}] (* Harvey P. Dale, Mar 05 2012 *)
Showing 1-8 of 8 results.
Comments