cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140833 Sum of Fibonacci numbers between F(-n)....F(n), inclusive.

Original entry on oeis.org

0, 2, 2, 6, 6, 16, 16, 42, 42, 110, 110, 288, 288, 754, 754, 1974, 1974, 5168, 5168, 13530, 13530, 35422, 35422, 92736, 92736, 242786, 242786, 635622, 635622, 1664080, 1664080, 4356618, 4356618, 11405774, 11405774, 29860704, 29860704, 78176338, 78176338
Offset: 0

Views

Author

Carey W. Strutz (cwstrutz(AT)excite.com), Jul 18 2008

Keywords

Comments

a(2n)/a(2n+1) converges to ((((sqrt 5)-1)/2)^2).

Examples

			a(3) = 2+(-1)+1+0+1+1+2=6.
G.f. = 2*x + 2*x^2 + 6*x^3 + 6*x^4 + 16*x^5 + 16*x^6 + 42*x^7 + ...
		

Crossrefs

Programs

  • Maple
    a:= n-> 2*(<<0|1>, <1|1>>^(ceil(n/2)*2))[1,2]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Nov 02 2016
  • Mathematica
    a[ n_] := 2 Fibonacci[ n + Mod[n, 2]]; (* Michael Somos, Nov 01 2016 *)
    LinearRecurrence[{0,3,0,-1},{0,2,2,6},50] (* Harvey P. Dale, Aug 07 2022 *)
  • PARI
    {a(n) = 2 * fibonacci(n + n%2)}; /* Michael Somos, Nov 01 2016 */

Formula

a(2n-1) = a(2n).
a(n) = 3*a(n-2) - a(n-4).
G.f.: 2x(1+x)/((1-x-x^2)(1+x-x^2)). a(n)=2*A094966(n) = A000045(n+2)-A039834(n-1). - R. J. Mathar, Oct 30 2008
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Nov 01 2016
a(n) = 2*A000045(ceiling(n/2)*2). - Alois P. Heinz, Nov 02 2016

Extensions

a(21)-a(22) corrected by Matthew House, Nov 01 2016