cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005349 Niven (or Harshad, or harshad) numbers: numbers that are divisible by the sum of their digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, 102, 108, 110, 111, 112, 114, 117, 120, 126, 132, 133, 135, 140, 144, 150, 152, 153, 156, 162, 171, 180, 190, 192, 195, 198, 200, 201, 204
Offset: 1

Views

Author

Keywords

Comments

Both spellings, "Harshad" or "harshad", are in use. It is a Sanskrit word, and in Sanskrit there is no distinction between upper- and lower-case letters. - N. J. A. Sloane, Jan 04 2022
z-Niven numbers are numbers n which are divisible by (A*s(n) + B) where A, B are integers and s(n) is sum of digits of n. Niven numbers have A = 1, B = 0. - Ctibor O. Zizka, Feb 23 2008
A070635(a(n)) = 0. A038186 is a subsequence. - Reinhard Zumkeller, Mar 10 2008
A049445 is a subsequence of this sequence. - Ctibor O. Zizka, Sep 06 2010
Complement of A065877; A188641(a(n)) = 1; A070635(a(n)) = 0. - Reinhard Zumkeller, Apr 07 2011
A001101, the Moran numbers, are a subsequence. - Reinhard Zumkeller, Jun 16 2011
A140866 gives the number of terms <= 10^k. - Robert G. Wilson v, Oct 16 2012
The asymptotic density of this sequence is 0 (Cooper and Kennedy, 1984). - Amiram Eldar, Jul 10 2020
From Amiram Eldar, Oct 02 2023: (Start)
Named "Harshad numbers" by the Indian recreational mathematician Dattatreya Ramchandra Kaprekar (1905-1986) in 1955. The meaning of the word is "giving joy" in Sanskrit.
Named "Niven numbers" by Kennedy et al. (1980) after the Canadian-American mathematician Ivan Morton Niven (1915-1999). During a lecture given at the 5th Annual Miami University Conference on Number Theory in 1977, Niven mentioned a question of finding a number that equals twice the sum of its digits, which appeared in the children's pages of a newspaper. (End)

Examples

			195 is a term of the sequence because it is divisible by 15 (= 1 + 9 + 5).
		

References

  • Paul Dahlenberg and T. Edgar, Consecutive factorial base Niven numbers, Fib. Q., 56:2 (2018), 163-166.
  • D. R. Kaprekar, Multidigital Numbers, Scripta Math., Vol. 21 (1955), p. 27.
  • Robert E. Kennedy and Curtis N. Cooper, On the natural density of the Niven numbers, Abstract 816-11-219, Abstracts Amer. Math. Soc., 6 (1985), 17.
  • Robert E. Kennedy, Terry A. Goodman, and Clarence H. Best, Mathematical Discovery and Niven Numbers, The MATYC Journal, Vol. 14, No. 1 (1980), pp. 21-25.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 381.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 171.

Crossrefs

Cf. A001102 (a subsequence).
Cf. A118363 (for factorial-base analog).
Cf. A330927, A154701, A141769, A330928, A330929, A330930 (start of runs of 2, 3, ..., 7 consecutive Niven numbers).

Programs

  • GAP
    Filtered([1..230],n-> n mod List(List([1..n],ListOfDigits),Sum)[n]=0); # Muniru A Asiru
  • Haskell
    a005349 n = a005349_list !! (n-1)
    a005349_list = filter ((== 0) . a070635) [1..]
    -- Reinhard Zumkeller, Aug 17 2011, Apr 07 2011
    
  • Magma
    [n: n in [1..250] | n mod &+Intseq(n) eq 0];  // Bruno Berselli, May 28 2011
    
  • Magma
    [n: n in [1..250] | IsIntegral(n/&+Intseq(n))];  // Bruno Berselli, Feb 09 2016
    
  • Maple
    s:=proc(n) local N:N:=convert(n,base,10):sum(N[j],j=1..nops(N)) end:p:=proc(n) if floor(n/s(n))=n/s(n) then n else fi end: seq(p(n),n=1..210); # Emeric Deutsch
  • Mathematica
    harshadQ[n_] := Mod[n, Plus @@ IntegerDigits@ n] == 0; Select[ Range[1000], harshadQ] (* Alonso del Arte, Aug 04 2004 and modified by Robert G. Wilson v, Oct 16 2012 *)
    Select[Range[300],Divisible[#,Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Sep 07 2015 *)
  • PARI
    is(n)=n%sumdigits(n)==0 \\ Charles R Greathouse IV, Oct 16 2012
    
  • Python
    A005349 = [n for n in range(1,10**6) if not n % sum([int(d) for d in str(n)])] # Chai Wah Wu, Aug 22 2014
    
  • Sage
    [n for n in (1..10^4) if sum(n.digits(base=10)).divides(n)] # Freddy Barrera, Jul 27 2018
    

A337078 The number of binary Niven numbers (A049445) not exceeding 2^n.

Original entry on oeis.org

2, 3, 5, 8, 13, 21, 37, 65, 124, 232, 431, 760, 1424, 2575, 4772, 8932, 17033, 32225, 61764, 117897, 224944, 428155, 814294, 1547596, 2934212, 5572886, 10609364, 20237826, 38773350, 74609953, 144275968, 280018507, 545782822, 1064716523, 2081890937, 4068716054
Offset: 1

Views

Author

Amiram Eldar, Aug 14 2020

Keywords

Examples

			a(1) = 2 since there are 2 binary Niven numbers not exceeding 2^1: 1 and 2.
		

Crossrefs

Programs

  • Mathematica
    binNivenQ[n_] := Divisible[n, DigitCount[n, 2, 1]]; s = {}; c = 0; p = 2; Do[If[binNivenQ[n], c++]; If[n == p, AppendTo[s, c]; p *= 2], {n, 1, 2^20}]; s

Formula

a(n) ~ 2^(n+1)/n (De Koninck et al., 2003, consequence of Theorem 1).

A348318 Number of n-digit Niven (or Harshad) numbers not containing the digit 0.

Original entry on oeis.org

9, 14, 108, 710, 4978, 35724, 273032, 2097356, 16674554, 135091242, 1112325268, 9296413365, 77991481271, 654495034497, 5420117473932
Offset: 1

Views

Author

Bernard Schott, Oct 17 2021

Keywords

Comments

This sequence comes from a problem, proposed by Argentina during the 39th International Mathematical Olympiad in 1998 at Taipei, Taiwan, but not used for the competition. This problem asked for a proof that, for each positive integer n, there exists an n-digit number, not containing the digit 0 and that is divisible by the sum of its digits (see links: Diophante in French and Scholes in English).
This sequence gives the number of such n-digit Niven numbers not containing the digit 0.

Examples

			a(2) = 14 because there are 14 integers {12, 18, 21, 24, 27, 36, 42, 45, 48, 54, 63, 72, 81, 84} in the set of Niven numbers with 2 digits and not containing the digit 0.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := ! MemberQ[(d = IntegerDigits[n]), 0] && Divisible[n, Plus @@ d]; a[n_] := Module[{c = 0, k = (10^n - 1)/9}, While[k < 10^n, If[q[k], c++]; k++]; c]; Array[a, 6] (* Amiram Eldar, Oct 17 2021 *)
  • Python
    from itertools import product
    def a(n): return sum(1 for p in product("123456789", repeat=n) if int("".join(p))%sum(map(int, p)) == 0)
    print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Oct 17 2021

Extensions

a(6)-a(10) from Amiram Eldar, Oct 17 2021
a(11)-a(15) from Martin Ehrenstein, Oct 22 2021
Showing 1-3 of 3 results.