A140978 Repeat (n+1)^2 n times.
4, 9, 9, 16, 16, 16, 25, 25, 25, 25, 36, 36, 36, 36, 36, 49, 49, 49, 49, 49, 49, 64, 64, 64, 64, 64, 64, 64, 81, 81, 81, 81, 81, 81, 81, 81, 100, 100, 100, 100, 100, 100, 100, 100, 100, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121
Offset: 1
Links
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
- M. de Frenicle, Methode pour trouver la solutions des problemes par les exclusions, in: Divers ouvrages des mathematiques et de physique par messieurs de l'academie royale des sciences, (1693) pp 1-44, table page 11.
Crossrefs
Cf. A000290.
Programs
-
Haskell
a140978 n k = a140978_tabl !! (n-1) !! (k-1) a140978_row n = a140978_tabl !! (n-1) a140978_tabl = map snd $ iterate (\(i, xs@(x:_)) -> (i + 2, map (+ i) (x:xs))) (5, [4]) -- Reinhard Zumkeller, Mar 23 2013
-
Mathematica
Table[PadRight[{},n,(n+1)^2],{n,10}]//Flatten (* Harvey P. Dale, Oct 10 2019 *)
-
Python
from math import isqrt def A140978(n): return ((m:=isqrt(k:=n<<1))+(k>m*(m+1))+1)**2 # Chai Wah Wu, Nov 07 2024
Formula
a(n)=(A003057(n+1))^2. - R. J. Mathar, Aug 25 2008
Comments