cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A309597 a(n) is the A325907(n)-th triangular number.

Original entry on oeis.org

6, 666, 5656566, 555665666566566, 5555555666655656666556566566566, 555555555555555666666665555665666666666555566566666556566566566
Offset: 1

Views

Author

Seiichi Manyama, Sep 14 2019

Keywords

Comments

a(n) decimal expansion includes A141023(n-1) 5's and A052950(n) 6's in digits.
All terms are elements of A213516.

Examples

			a(1) =               6 =               6 +        0 +    0 * 10^1.
a(2) =             666 =             556 +       10 +    1 * 10^2.
a(3) =         5656566 =         5555556 +     1010 +   10 * 10^4.
a(4) = 555665666566566 = 555555555555556 + 11011010 + 1101 * 10^8.
------------------------------------------------------------------
a(2) =                                 6 6 6. (            3 6's)
                                       - -
a(3) =                           5 65 65  66. ( 3 5's and  4 6's)
                                 - -- --
a(4) =                  555 6656 6656   6566. ( 6 5's and  9 6's)
                        --- ---- ----
a(5) = 5555555 66665565 66665565    66566566. (15 5's and 16 6's)
       ------- -------- --------
		

Crossrefs

Programs

  • Ruby
    def A325907(n)
      a = [3]
      (2..n).each{|i|
        j = 10 ** (2 ** (i - 2))
        a << (j + 3) * (j - 1) / 3 - a[-1]
      }
      a
    end
    def A309597(n)
      A325907(n).map{|i| i * (i + 1) / 2}
    end
    p A309597(10)

Formula

a(n) = A000217(A325907(n)).
a(n) = A093142(2^n - 1) + A325493(n-1) + A325910(n-1) * 10^(2^(n-1)).

A290258 Triangle read by rows: row n (>=2) contains in increasing order the integers for which the binary representation has length n and all runs of 1's have even length.

Original entry on oeis.org

3, 6, 12, 15, 24, 27, 30, 48, 51, 54, 60, 63, 96, 99, 102, 108, 111, 120, 123, 126, 192, 195, 198, 204, 207, 216, 219, 222, 240, 243, 246, 252, 255, 384, 387, 390, 396, 399, 408, 411, 414, 432, 435, 438, 444, 447, 480, 483, 486, 492, 495, 504, 507, 510
Offset: 2

Views

Author

Emeric Deutsch, Sep 12 2017

Keywords

Comments

The viabin numbers of integer partitions having only even parts. The viabin number of an integer partition is defined in the following way. Consider the southeast border of the Ferrers board of the integer partition and consider the binary number obtained by replacing each east step with 1 and each north step, except the last one, with 0. The corresponding decimal form is, by definition, the viabin number of the given integer partition. "Viabin" is coined from "via binary". For example, consider the integer partition [6,4,4,2]. The southeast border of its Ferrers board yields 110110011 (length is 9), leading to the viabin number 435 (a term in row 9).
Number of entries in row n is the Fibonacci number F(n-1) = A000045(n-1).
T(n,k) = A290259(n-1,k) + 2^(n-1).
Last entry in row n = A141023(n).
Basically the same as A277335.

Examples

			399 is in the sequence because all the runs of 1's of its binary representation, namely 110001111, have even lengths.
Triangle begins:
  3;
  6;
  12,15;
  24,27,30;
  48,51,54,60,63;
  96,99,102,108,111,120,123,126;
  ...
		

Crossrefs

Programs

  • Maple
    A[2] := {3}; A[3] := {6}; for n from 4 to 10 do A[n] := `union`(map(proc (x) 2*x end proc, A[n-1]), map(proc (x) 4*x+3 end proc, A[n-2])) end do; # yields sequence in triangular form
  • Mathematica
    A[2] = {3}; A[3] = {6};
    For[n = 4, n <= 10, n++, A[n] = Union[2 A[n-1], 4 A[n-2] + 3]];
    Table[A[n], {n, 2, 10}] // Flatten (* Jean-François Alcover, Aug 19 2024, after Maple program *)

Formula

The entries in row n (n>=4) are: (i) 2x, where x is in row n-1 and (ii) 4y + 3, where y is in row n-2. The Maple program is based on this.

A290604 a(0) = 2, a(1) = 2; for n > 1, a(n) = a(n-1) + 2*a(n-2) + 3.

Original entry on oeis.org

2, 2, 9, 16, 37, 72, 149, 296, 597, 1192, 2389, 4776, 9557, 19112, 38229, 76456, 152917, 305832, 611669, 1223336, 2446677, 4893352, 9786709, 19573416, 39146837, 78293672, 156587349, 313174696, 626349397, 1252698792, 2505397589, 5010795176, 10021590357
Offset: 0

Views

Author

Iain Fox, Oct 11 2017

Keywords

Comments

Ratio of successive terms approaches 2.

Examples

			a(0) = 2.
a(1) = 2.
a(2) = 2 + 2*2 + 3 = 9.
a(3) = 9 + 2*2 + 3 = 16.
a(4) = 16 + 9*2 + 3 = 37.
...
		

Programs

  • Magma
    [(2^(n+2)+2*(-1)^n)/3+2^n-(3-(-1)^n)/2: n in [0..40]]; // Vincenzo Librandi, Oct 20 2017
  • Mathematica
    Table[(2^(n + 2) + 2 (-1)^n) / 3 + 2^n - (3 - (-1)^n) / 2, {n, 0, 40}] (* Vincenzo Librandi, Oct 20 2017 *)
    LinearRecurrence[{2,1,-2},{2,2,9},50] (* Harvey P. Dale, Mar 06 2025 *)
  • PARI
    Vec((2/(1-x-2*x^2)) + (3*x^2/((1-x)*(1-x-2*x^2))) + O(x^50)) \\ Michel Marcus, Oct 12 2017
    
  • PARI
    first(n) = Vec((2 - 2*x + 3*x^2)/(1 - 2*x - x^2 + 2*x^3) + O(x^n)) \\ Iain Fox, Dec 18 2017
    

Formula

a(n) = (2^(n+2) + 2*(-1)^n)/3 + 2^n - (3-(-1)^n)/2.
a(n) = A014113(n+1) + A141023(n).
G.f.: (2 - 2*x + 3*x^2)/(1 - 2*x - x^2 + 2*x^3).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), n > 2. - Iain Fox, Dec 18 2017
Showing 1-3 of 3 results.