A309597
a(n) is the A325907(n)-th triangular number.
Original entry on oeis.org
6, 666, 5656566, 555665666566566, 5555555666655656666556566566566, 555555555555555666666665555665666666666555566566666556566566566
Offset: 1
a(1) = 6 = 6 + 0 + 0 * 10^1.
a(2) = 666 = 556 + 10 + 1 * 10^2.
a(3) = 5656566 = 5555556 + 1010 + 10 * 10^4.
a(4) = 555665666566566 = 555555555555556 + 11011010 + 1101 * 10^8.
------------------------------------------------------------------
a(2) = 6 6 6. ( 3 6's)
- -
a(3) = 5 65 65 66. ( 3 5's and 4 6's)
- -- --
a(4) = 555 6656 6656 6566. ( 6 5's and 9 6's)
--- ---- ----
a(5) = 5555555 66665565 66665565 66566566. (15 5's and 16 6's)
------- -------- --------
A290258
Triangle read by rows: row n (>=2) contains in increasing order the integers for which the binary representation has length n and all runs of 1's have even length.
Original entry on oeis.org
3, 6, 12, 15, 24, 27, 30, 48, 51, 54, 60, 63, 96, 99, 102, 108, 111, 120, 123, 126, 192, 195, 198, 204, 207, 216, 219, 222, 240, 243, 246, 252, 255, 384, 387, 390, 396, 399, 408, 411, 414, 432, 435, 438, 444, 447, 480, 483, 486, 492, 495, 504, 507, 510
Offset: 2
399 is in the sequence because all the runs of 1's of its binary representation, namely 110001111, have even lengths.
Triangle begins:
3;
6;
12,15;
24,27,30;
48,51,54,60,63;
96,99,102,108,111,120,123,126;
...
-
A[2] := {3}; A[3] := {6}; for n from 4 to 10 do A[n] := `union`(map(proc (x) 2*x end proc, A[n-1]), map(proc (x) 4*x+3 end proc, A[n-2])) end do; # yields sequence in triangular form
-
A[2] = {3}; A[3] = {6};
For[n = 4, n <= 10, n++, A[n] = Union[2 A[n-1], 4 A[n-2] + 3]];
Table[A[n], {n, 2, 10}] // Flatten (* Jean-François Alcover, Aug 19 2024, after Maple program *)
A290604
a(0) = 2, a(1) = 2; for n > 1, a(n) = a(n-1) + 2*a(n-2) + 3.
Original entry on oeis.org
2, 2, 9, 16, 37, 72, 149, 296, 597, 1192, 2389, 4776, 9557, 19112, 38229, 76456, 152917, 305832, 611669, 1223336, 2446677, 4893352, 9786709, 19573416, 39146837, 78293672, 156587349, 313174696, 626349397, 1252698792, 2505397589, 5010795176, 10021590357
Offset: 0
a(0) = 2.
a(1) = 2.
a(2) = 2 + 2*2 + 3 = 9.
a(3) = 9 + 2*2 + 3 = 16.
a(4) = 16 + 9*2 + 3 = 37.
...
-
[(2^(n+2)+2*(-1)^n)/3+2^n-(3-(-1)^n)/2: n in [0..40]]; // Vincenzo Librandi, Oct 20 2017
-
Table[(2^(n + 2) + 2 (-1)^n) / 3 + 2^n - (3 - (-1)^n) / 2, {n, 0, 40}] (* Vincenzo Librandi, Oct 20 2017 *)
LinearRecurrence[{2,1,-2},{2,2,9},50] (* Harvey P. Dale, Mar 06 2025 *)
-
Vec((2/(1-x-2*x^2)) + (3*x^2/((1-x)*(1-x-2*x^2))) + O(x^50)) \\ Michel Marcus, Oct 12 2017
-
first(n) = Vec((2 - 2*x + 3*x^2)/(1 - 2*x - x^2 + 2*x^3) + O(x^n)) \\ Iain Fox, Dec 18 2017
Showing 1-3 of 3 results.
Comments