A141046 a(n) = 4*n^4.
0, 4, 64, 324, 1024, 2500, 5184, 9604, 16384, 26244, 40000, 58564, 82944, 114244, 153664, 202500, 262144, 334084, 419904, 521284, 640000, 777924, 937024, 1119364, 1327104, 1562500, 1827904, 2125764, 2458624, 2829124, 3240000, 3694084, 4194304, 4743684, 5345344
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Haskell
a141046 = (* 4) . (^ 4) -- Reinhard Zumkeller, Jan 25 2012
-
Mathematica
Table[4 n^4, {n, 0, 20}]
-
PARI
a(n)=4*n^4 \\ Charles R Greathouse IV, Jan 26 2012
Formula
a(n) = 4*n^4.
G.f.: 4*x*(1 + x)*(1 + 10*x + x^2)/(1 - x)^5. - Chai Wah Wu, Jun 22 2016
From G. C. Greubel, Jun 22 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
E.g.f.: 4*x*(1 + 7*x + 6*x^2 + x^3)*exp(x). (End)
a(n) = A001105(n)^2. - Bruce J. Nicholson, Apr 03 2017
From Amiram Eldar, Jan 29 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^4/360.
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*Pi^4/2880.
Product_{n>=1} (1 + 1/a(n)) = 2*cosh(Pi/2)^2/Pi^2.
Product_{n>=1} (1 - 1/a(n)) = 2*sin(Pi/sqrt(2))*sinh(Pi/sqrt(2))/Pi^2. (End)
Comments