cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141046 a(n) = 4*n^4.

Original entry on oeis.org

0, 4, 64, 324, 1024, 2500, 5184, 9604, 16384, 26244, 40000, 58564, 82944, 114244, 153664, 202500, 262144, 334084, 419904, 521284, 640000, 777924, 937024, 1119364, 1327104, 1562500, 1827904, 2125764, 2458624, 2829124, 3240000, 3694084, 4194304, 4743684, 5345344
Offset: 0

Views

Author

Fredrik Johansson, Jul 31 2008

Keywords

Comments

Nonnegative integers a(n) such that (-a(n))^(1/4) is a Gaussian integer, since (n + n*i)^4 = -4*n^4
For n > 1, a(n) + k^4 is not prime for any k. - Derek Orr, May 31 2014
Suppose the vertices of a triangle are (T(n), T(n+j)), (T(n+2*j), T(n+3*j)) and (T(n+4*j), T(n+5*j)) where T(n) is the n-th triangular number. Then the area of this triangle will be a(j). - Charlie Marion, Mar 06 2021

Crossrefs

Programs

Formula

a(n) = 4*n^4.
a(n) = A008586(A000583(n)) = A000290(A005843(A000290(n))). - Reinhard Zumkeller, Jan 25 2012
G.f.: 4*x*(1 + x)*(1 + 10*x + x^2)/(1 - x)^5. - Chai Wah Wu, Jun 22 2016
From G. C. Greubel, Jun 22 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
E.g.f.: 4*x*(1 + 7*x + 6*x^2 + x^3)*exp(x). (End)
a(n) = A001105(n)^2. - Bruce J. Nicholson, Apr 03 2017
From Amiram Eldar, Jan 29 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^4/360.
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*Pi^4/2880.
Product_{n>=1} (1 + 1/a(n)) = 2*cosh(Pi/2)^2/Pi^2.
Product_{n>=1} (1 - 1/a(n)) = 2*sin(Pi/sqrt(2))*sinh(Pi/sqrt(2))/Pi^2. (End)