cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A016744 a(n) = (2*n)^4.

Original entry on oeis.org

0, 16, 256, 1296, 4096, 10000, 20736, 38416, 65536, 104976, 160000, 234256, 331776, 456976, 614656, 810000, 1048576, 1336336, 1679616, 2085136, 2560000, 3111696, 3748096, 4477456, 5308416, 6250000, 7311616, 8503056, 9834496, 11316496, 12960000, 14776336, 16777216
Offset: 0

Views

Author

Keywords

Comments

Suppose the vertices of a triangle are (S(n), S(n+j)), (S(n+2*j), S(n+3*j)) and (S(n+4*j), S(n+5*j)) where S(n) is the n-th square number, A000290(n). Then the area of this triangle will be a(j). A generalization follows: let P(k,n) = the n-th k-gonal number and suppose the vertices of a triangle are (P(k,n), P(k,n+j)), (P(k,n+2*j), P(k,n+3*j)) and (P(k,n+4*j), P(k,n+5*j)). Then the area of this triangle will be (2*k-4)^2*j^4. See also A141046 for k = 3. - Charlie Marion, Mar 26 2021

Crossrefs

Programs

Formula

G.f.: 16*x*(x+1)*(x^2+10*x+1)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
E.g.f.: 16*x*(1 + 7*x + 6*x^2 + x^3)*exp(x). - G. C. Greubel, Sep 15 2018
From Amiram Eldar, Oct 10 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi^4/1440 (conjecturally A258945).
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*Pi^4/11520. (End)

A171607 Expressible as A*B^A in a nontrivial way.

Original entry on oeis.org

8, 18, 24, 32, 50, 64, 72, 81, 98, 128, 160, 162, 192, 200, 242, 288, 324, 338, 375, 384, 392, 450, 512, 578, 648, 722, 800, 882, 896, 968, 1024, 1029, 1058, 1152, 1215, 1250, 1352, 1458, 1536, 1568, 1682, 1800, 1922, 2048, 2178, 2187, 2312, 2450, 2500, 2592
Offset: 1

Views

Author

Robert Munafo, Dec 12 2009

Keywords

Examples

			8=2*2^2. 24=3*2^3. 375=3*5^3.
		

Crossrefs

Cf. A171606. Union of the "KN^K" sequences A001105, A117642, A141046, ... or of the "NK^N" sequences A036289, A036290, A018215, A036291, ... but omitting the trivial initial terms.

Programs

  • PARI
    is(n)=if(n<8, return(0)); for(a=2,logint(n\2,2), if(n%a==0 && ispower(n/a,a), return(1))); 0 \\ Charles R Greathouse IV, Feb 19 2017
    
  • PARI
    list(lim)=my(v=List()); if(lim<8,return([])); for(a=2,logint(lim\2,2), for(b=2,sqrtnint(lim\a,a), listput(v,a*b^a))); Set(v) \\ Charles R Greathouse IV, Feb 19 2017

Formula

a(n) = 2n^2 - O(n^(5/3)). - Charles R Greathouse IV, Feb 19 2017

A211412 a(n) = 4*n^4 + 1.

Original entry on oeis.org

5, 65, 325, 1025, 2501, 5185, 9605, 16385, 26245, 40001, 58565, 82945, 114245, 153665, 202501, 262145, 334085, 419905, 521285, 640001, 777925, 937025, 1119365, 1327105, 1562501, 1827905, 2125765, 2458625, 2829125, 3240001, 3694085, 4194305, 4743685, 5345345, 6002501, 6718465, 7496645
Offset: 1

Views

Author

Alonso del Arte, Feb 10 2013

Keywords

Comments

Except for the first term, all terms are composite. a(n) is divisible by 5 if n is not.
Long before Aurifeuille, Euler discovered that 4n^4 + 1 = (2n^2 + 2n + 1)*(2n^2 - 2n + 1). For example, 325 = 4 * 3^4 + 1 = (2 * 3^2 + 2 * 3 + 1)*(2 * 3^2 - 2 * 3 + 1) = 25 * 13. Euler shared this discovery with Goldbach in a letter dated August 28, 1742. [Euler identity corrected by Graham Holmes, Jun 02 2023]
The terms of the sequence are the arithmetic mean of eight numbers located on concentric circles (see Avilov link). - Nicolay Avilov, Jan 22 2021

References

  • Don Knuth, The Art of Computer Programming: Seminumerical Algorithms, 3rd ed., New York: Addison-Wesley Professional (1997), p. 392.
  • David Wells, Prime Numbers: The Most Mysterious Figures in Math. Hoboken, New Jersey: John Wiley & Sons (2005), p. 15.

Crossrefs

Cf. A207262 (subset).
After the first term, subsequence of A121944.
Cf. A053755.

Programs

Formula

G.f.: -x*(x^4+50*x^2+40*x+5) / (x-1)^5. - Colin Barker, Feb 11 2013
a(n) = A053755(n^2). - Michel Marcus, Sep 18 2015
a(n) = (2*n^2)^2 + 1^2 = (2*n^2-1)^2 + (2*n)^2. - Thomas Ordowski, Sep 18 2015
a(n) = A001844(n) * A001844(n+1) = A141046(n) + 1 = (A000583(n) * 4 ) + 1 = A016742(n) + A173121(n) + 1. - Bruce J. Nicholson, Jun 06 2017
From Amiram Eldar, Jul 26 2022: (Start)
Sum_{n>=1} 1/a(n) = tanh(Pi/2)*Pi/4 - 1/2.
Sum_{n>=1} (-1)^n/a(n) = 1/2 - sech(Pi/2)*Pi/4. (End)

A211996 Number of ordered pairs (i,j) such that i*j=n and i+j is a square.

Original entry on oeis.org

0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 4, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Michel Marcus, Oct 25 2012

Keywords

Comments

a(n) = 1 for n > 0 in A141046.
a(8820) = 8 and it is the only term in the first 10000 terms that is greater than 6. There are 977 terms in the first 10000 terms that are greater than zero. - Harvey P. Dale, Nov 08 2012

Examples

			For n=3, the pairs (a,b) such that a*b=3 are (1,3) and (3,1). Both pairs add up to a square, so a(3) = 2.
		

Crossrefs

Programs

Formula

Sum_{k=1..n} a(k) = c * n^(3/4) + O(sqrt(n)), where c = A377731 (De Koninck et al., 2024). - Amiram Eldar, Nov 05 2024

A377732 Numbers k such that max{d|k, d <= sqrt(k)} + min{d|k, d >= sqrt(k)} is a square.

Original entry on oeis.org

3, 4, 14, 18, 20, 39, 46, 55, 60, 63, 64, 94, 114, 136, 150, 154, 155, 156, 158, 183, 203, 243, 258, 275, 291, 295, 299, 308, 315, 320, 323, 324, 328, 334, 444, 446, 490, 544, 558, 570, 579, 580, 583, 584, 588, 594, 598, 600, 695, 710, 718, 799, 855, 878, 903, 904, 938, 943, 955, 959, 975, 978, 979, 988, 999
Offset: 1

Views

Author

Amiram Eldar, Nov 05 2024

Keywords

Comments

Numbers k such that A063655(k) = A033676(k) + A033677(k) is a square.
The square terms of this sequence are the positive numbers of the form A141046(m) = 4*m^4.

Crossrefs

Subsequences: A141046 \ {0}, A377733, A377736.

Programs

  • Mathematica
    q[k_] := If[IntegerQ[Sqrt[k]], IntegerQ[Sqrt[2*Sqrt[k]]], Module[{d = Divisors[k], nh}, nh = Length[d]/2; IntegerQ[Sqrt[d[[nh]] + d[[nh + 1]]]]]]; Select[Range[1000], q]
  • PARI
    is(k) = if(issquare(k), issquare(2 * sqrtint(k)), my(d = divisors(k), nh = #d/2); issquare(d[nh] + d[nh + 1]));
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    def A377732_gen(startvalue=1): # generator of terms >= startvalue
        for k in count(max(startvalue,1)):
            d = (a:=divisors(k))[len(a)-1>>1]
            if is_square(d+k//d):
                yield k
    A377732_list = list(islice(A377732_gen(),30)) # Chai Wah Wu, Nov 06 2024

Formula

c * x^(3/4) / log(x) < R(x) < 2 * c * x^(3/4) / log(x) for sufficiently large x, where R(x) is the number of terms that do not exceed x, and c = A377731 (De Koninck et al., 2024).

A227855 Numbers of the form x^4 + 4*y^4.

Original entry on oeis.org

0, 1, 4, 5, 16, 20, 64, 65, 80, 81, 85, 145, 256, 260, 320, 324, 325, 340, 405, 580, 625, 629, 689, 949, 1024, 1025, 1040, 1105, 1280, 1296, 1300, 1360, 1620, 1649, 2320, 2401, 2405, 2465, 2500, 2501, 2516, 2581, 2725, 2756, 3125, 3425, 3796, 4096, 4100, 4160
Offset: 1

Views

Author

Alonso del Arte, Oct 31 2013

Keywords

Comments

Since 4 is even, either x or y or both may be negative integers, because their fourth powers will then be positive.
The only prime term in this sequence is 5; this can be proved using Sophie Germain's identity.

Examples

			80 = 2^4 + 4 * 2^4.
81 = 3^4 + 4 * 0^4.
85 = 3^4 + 4 * 1^4.
		

References

  • Titu Andreescu and Rǎzvan Gelca, Mathematical Olympiad Challenges, New York, Birkhäuser (2009), p. 48.

Crossrefs

Subsequences include A000583, A141046 and A001589.

Programs

  • Mathematica
    nn = 10; Union[Select[Flatten[Table[x^4 + 4*y^4, {x, 0, nn}, {y, 0, nn}]], # <= nn^4 &]] (* T. D. Noe, Nov 08 2013 *)
  • PARI
    list(lim)=my(v=List(),t); for(y=0,sqrtnint(lim\4,4), for(x=0, sqrtnint(lim\1-(t=4*y^4),4), listput(v,t+x^4))); Set(v) \\ Charles R Greathouse IV, Nov 07 2013

Formula

x^4 + 4y^4 = (x^2 - 2xy + 2y^2)(x^2 + 2xy + 2y^2). This is Sophie Germain's identity.

A244730 a(n) = 2*n^4.

Original entry on oeis.org

0, 2, 32, 162, 512, 1250, 2592, 4802, 8192, 13122, 20000, 29282, 41472, 57122, 76832, 101250, 131072, 167042, 209952, 260642, 320000, 388962, 468512, 559682, 663552, 781250, 913952, 1062882, 1229312, 1414562, 1620000, 1847042, 2097152, 2371842, 2672672
Offset: 0

Views

Author

Vincenzo Librandi, Jul 05 2014

Keywords

Crossrefs

Programs

  • Magma
    [2*n^4: n in [0..40]];
    
  • Magma
    I:=[0,2,32,162, 512]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]];
  • Mathematica
    Table[2 n^4, {n, 0, 40}] (* or *) CoefficientList[Series[2(x + 11 x^2 + 11 x^3 + x^4)/(1 - x)^5, {x, 0, 40}], x]
    LinearRecurrence[{5,-10,10,-5,1},{0,2,32,162,512},40] (* Harvey P. Dale, Jun 17 2022 *)

Formula

G.f.: 2*(x + 11*x^2 + 11*x^3 + x^4)/(1 - x)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>4.
a(n) = (A082044(n) + A099761(n+1)-2)/2. - Bruce J. Nicholson, Jun 12 2017

A377733 Numbers k such that k and k+1 are both terms in A377732.

Original entry on oeis.org

3, 63, 154, 155, 323, 579, 583, 903, 978, 1023, 2019, 2499, 3503, 5174, 5183, 5379, 8234, 9603, 11534, 12415, 14718, 16383, 20454, 20538, 26243, 31930, 39999, 46814, 58563, 69719, 82943, 90218, 93995, 96663, 102943, 114243, 117998, 118979, 124118, 135814, 138490, 149879
Offset: 1

Views

Author

Amiram Eldar, Nov 05 2024

Keywords

Comments

This sequence is infinite. All the positive numbers of the form A141046(m) - 1 = 4*m^4 -1 are terms (De Koninck et al., 2024, section 6).

Crossrefs

Subsequence of A377732.
A377736 is a subsequence.
Cf. A141046.

Programs

  • Mathematica
    q[k_] := q[k] = If[IntegerQ[Sqrt[k]], IntegerQ[Sqrt[2*Sqrt[k]]], Module[{d = Divisors[k], nh}, nh = Length[d]/2; IntegerQ[Sqrt[d[[nh]] + d[[nh + 1]]]]]]; Select[Range[150000], q[#] && q[#+1] &]
  • PARI
    is1(k) = if(issquare(k), issquare(2 * sqrtint(k)), my(d = divisors(k), nh = #d/2); issquare(d[nh] + d[nh + 1]));
    lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}

A269792 a(n) = 5*n^4.

Original entry on oeis.org

0, 5, 80, 405, 1280, 3125, 6480, 12005, 20480, 32805, 50000, 73205, 103680, 142805, 192080, 253125, 327680, 417605, 524880, 651605, 800000, 972405, 1171280, 1399205, 1658880, 1953125, 2284880, 2657205, 3073280, 3536405, 4050000, 4617605, 5242880, 5929605
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 31 2016

Keywords

Comments

More generally, the ordinary generating function for the sequences of the form k*n^m, is k*Sum_{j>=1}x^j*j^m (when abs(x)<1).
More generally, the ordinary generating function for the values of quartic polynomial p*n^4 + q*n^3 + k*n^2 + m*n + r, is (r + (p + q + k + m - 4*r)*x + (11*p + 3*q - k - 3*m + 6*r)*x^2 + (11*p - 3*q - k + 3*m - 4*r)*x^3 + (p - q + k - m + r)*x^4)/(1 - x)^5.

Crossrefs

Cf. similar sequences of the form k*n^m, for k = 1...5, m = 1...10: A001477(k = 1, m = 1), A005843 (k = 2, m = 1), A008585 (k = 3, m = 1), A008586 (k = 4, m = 1), A008587 (k = 5, m = 1), A000290 (k = 1, m = 2), A001105 (k = 2, m = 2), A033428 (k = 3, m = 2), A016742 (k = 4, m = 2), A033429 (k = 5, m = 2), A000578 (k = 1, m = 3), A033431 (k = 2, m = 3), A117642 (k = 3, m = 3), A033430 (k = 4, m = 3), A244725 (k = 5, m = 3), A000583 (k = 1, m = 4), A244730 (k = 2, m = 4), A219056 (k = 3, m = 4), A141046 (k = 4, m = 4), this sequence(k = 5, m = 4), A000584 (k = 1, m = 5), A001014 (k = 1, m = 6), A106318 (k = 2, m = 6), A001015 (k = 1, m = 7), A001016 (k = 1, m = 8), A001017 (k = 1, m = 9), A008454 (k = 1, m = 10).

Programs

  • Maple
    A269792:=n->5*n^4: seq(A269792(n), n=0..50); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    Table[5 n^4, {n, 0, 33}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 5, 80, 405, 1280}, 34]
  • PARI
    x='x+O('x^99); concat(0, Vec(5*x*(1+11*x+11*x^2+x^3)/(1-x)^5)) \\ Altug Alkan, Mar 31 2016

Formula

G.f.: 5*x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5.
E.g.f.: 5*exp(x)^x*x*(1 + 7*x + 6*x^2 + x^3).
a(n) = 5*a(n-1) - 10*(9n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 5*A000583(n) = A008587(n)*A000578(n).
Sum_{n>=1} 1/a(n) = Pi^4/450 = (1/450)*A092425 = 0.216464646742...

A305290 Numbers k such that 4*k + 1 is a perfect cube, sorted by absolute values.

Original entry on oeis.org

0, -7, 31, -86, 182, -333, 549, -844, 1228, -1715, 2315, -3042, 3906, -4921, 6097, -7448, 8984, -10719, 12663, -14830, 17230, -19877, 22781, -25956, 29412, -33163, 37219, -41594, 46298, -51345, 56745, -62512, 68656, -75191, 82127, -89478, 97254, -105469, 114133, -123260, 132860
Offset: 1

Views

Author

Bruno Berselli, May 29 2018

Keywords

Crossrefs

Cf. A016755.
Cf. A000290: k such that 4*k is a square.
Cf. A002378: k such that 4*k+1 is a square.
Cf. A033431: k such that 4*k is a nonnegative cube.
Cf. A305291: k such that 4*k+3 is a cube.
Cf. A141046: k such that 4*k is a fourth power.
Cf. 4*A219086: k such that 4*k+1 is a fourth power.

Programs

  • Maple
    seq(coeff(series(x^2*(-7+10*x-7*x^2)/((1-x)*(1+x)^4), x,50),x,n),n=1..45); # Muniru A Asiru, May 31 2018
  • Mathematica
    LinearRecurrence[{-3, -2, 2, 3, 1}, {0, -7, 31, -86, 182}, 45] (* Jean-François Alcover, Jun 04 2018 *)
  • PARI
    concat(0, Vec(-x^2*(7 - 10*x + 7*x^2) / ((1 - x)*(1 + x)^4) + O(x^40))) \\ Colin Barker, Jun 04 2018

Formula

G.f.: x^2*(-7 + 10*x - 7*x^2)/((1 - x)*(1 + x)^4).
a(n) = -3*a(n-1) - 2*a(n-2) + 2*a(n-3) + 3*a(n-4) + a(n-5).
a(n) = (-1 - A016755(n-1)*(-1)^n)/4.
a(n) + a(-n) = (-1)^n*2^((1-(-1)^n)/2).
(n - 2)*(4*n^2 - 16*n + 19)*a(n) + (12*n^2 - 36*n + 31)*a(n-1) - (n - 1)*(4*n^2 - 8*n + 7)*a(n-2) = 0.
From Colin Barker, May 30 2018: (Start)
a(n) = n*(4*n^2 + 6*n + 3)/2 for n even.
a(n) = -(n + 1)*(4*n^2 + 2*n + 1)/2 for n odd.
(End)
Showing 1-10 of 10 results.