A016744 a(n) = (2*n)^4.
0, 16, 256, 1296, 4096, 10000, 20736, 38416, 65536, 104976, 160000, 234256, 331776, 456976, 614656, 810000, 1048576, 1336336, 1679616, 2085136, 2560000, 3111696, 3748096, 4477456, 5308416, 6250000, 7311616, 8503056, 9834496, 11316496, 12960000, 14776336, 16777216
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(2*n)^4: n in [0..40]]; // Vincenzo Librandi, Sep 05 2011
-
Maple
A016744:=n->(2*n)^4: seq(A016744(n), n=0..50); # Wesley Ivan Hurt, Sep 15 2018
-
Mathematica
Table[(2*n)^4, {n,0,30}] (* G. C. Greubel, Sep 15 2018 *)
-
PARI
vector(30, n, n--; (2*n)^4) \\ G. C. Greubel, Sep 15 2018
Formula
G.f.: 16*x*(x+1)*(x^2+10*x+1)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
E.g.f.: 16*x*(1 + 7*x + 6*x^2 + x^3)*exp(x). - G. C. Greubel, Sep 15 2018
From Amiram Eldar, Oct 10 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi^4/1440 (conjecturally A258945).
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*Pi^4/11520. (End)
Comments