A171606
Numbers expressible as A*B^A in two or more different ways, with A, B > 1.
Original entry on oeis.org
648, 2048, 4608, 5184, 41472, 52488, 472392, 500000, 524288, 2654208, 3125000, 4718592, 10125000, 13436928, 21233664, 30233088, 46118408, 76236552, 134217728, 169869312, 344373768, 402653184, 512000000, 648000000, 737894528, 800000000, 838860800, 922640625
Offset: 1
648 = 3 * 6^3 = 2 * 18^2.
5184 = 4 * 6^4 = 3 * 12^3.
344373768 = 8 * 9^8 = 3 * 486^3 = 2 * 13122^2.
922640625 = 5 * 45^5 = 3 * 675^3.
A235368
The smallest number with n representations of the form A*B^A with A, B > 1.
Original entry on oeis.org
8, 648, 344373768, 5797226647880997086048126220703125000000000000000000000000000000000000000000000000000000000000000000000000000
Offset: 1
a(3) = 344373768 = 8*9^8 = 3*486^3 = 2*13122^2.
A316745
Numbers expressible as A*B^A in three or more different ways, with A, B > 1.
Original entry on oeis.org
344373768, 30233088000000, 5777633090469888, 198077054103584768, 97261323672455430408, 5242880000000000000000, 32462531054272512000000, 96932598327560852471808, 20526276111602783203125000, 195845982777569926302400512, 1631774235698698006327984128
Offset: 1
30233088000000 is a term because it can be expressed as 2*3888000^2 = 3*21600^3 = 5*360^5.
-
abaC[n_] := Block[{c=0, k=2}, While[n >= k 2^k, If[Mod[n, k] == 0 && IntegerQ[ (n/k)^ (1/k)], c++]; k++]; c]; lim = 10^20; a=5; Union@ Reap[ While[a 2^a < lim, b=2; While[(v = a b^a) < lim, If[abaC[v] > 2, Sow[v]]; b++]; a++]][[2, 1]]
Showing 1-3 of 3 results.
Comments