A141060 Fourth quadrisection of Jacobsthal numbers A001045: a(n)=16a(n-1)-5.
3, 43, 683, 10923, 174763, 2796203, 44739243, 715827883, 11453246123, 183251937963, 2932031007403, 46912496118443, 750599937895083, 12009599006321323, 192153584101141163, 3074457345618258603, 49191317529892137643
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (17,-16).
Crossrefs
Programs
-
Magma
[(1/3)*(1+8*16^n): n in [0..25]]; // Vincenzo Librandi, May 25 2011
-
Mathematica
LinearRecurrence[{17,-16},{3,43},30] (* Harvey P. Dale, Mar 16 2015 *)
-
PARI
a(n)=8*16^n\3+1 \\ Charles R Greathouse IV, May 25 2011
-
Python
def A141060(n): return ((1<<(n<<2)+3)|1)//3 # Chai Wah Wu, Apr 18 2025
Formula
G.f.: (3-8*x)/((1-x)*(1-16*x)). [Colin Barker, Apr 05 2012]
a(0)=3, a(1)=43, a(n)=17*a(n-1)-16*a(n-2). - Harvey P. Dale, Mar 16 2015
From Jianing Song, Aug 30 2022: (Start)
a(n) = A001045(4*n+3).
Comments