cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A117825 Distance from n-th highly composite number (cf. A002182) to nearest prime.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 11, 13, 1, 11, 1, 17, 1, 1, 13, 13, 1, 1, 17, 1, 17, 1, 1, 17, 17, 17, 1, 1, 19, 37, 37, 1, 17, 23, 1, 29, 1, 1, 19, 1, 19, 23, 1, 19, 31, 1, 19, 1, 1, 1, 1, 23, 1, 29, 23, 23, 1, 23, 71, 37, 1, 1, 31, 1, 23, 53, 1, 31
Offset: 1

Views

Author

Bill McEachen, May 01 2006

Keywords

Comments

a) Conjecture: entries > 1 will always be prime. The entry will be larger than the largest prime factor of the highly composite number.
b) Will 1 always be the most common entry?
c) While a prime may always be located close to each highly composite number, is the converse false?
d) Is there always a prime between successive highly composite numbers?
From Antti Karttunen, Feb 26 2019: (Start)
The second sentence of point (a) follows as both gcd(n, A151799(n)) = 1 and gcd(A151800(n), n) = 1 for all n > 2 and the fact that the highly composite numbers are products of primorials, A002110 (with the least coprime prime > the largest prime factor). See also the conjectures and notes in A129912 and A141345. (End)

Examples

			a(5) = abs(12-11) = 1.
		

Crossrefs

Sequences tied to conjecture a): A228943, A228945.
Cf. also A005235, A060270.

Programs

Formula

a(1) = 1; for n > 1, a(n) = min(A141345(n), A324385(n)). - Antti Karttunen, Feb 26 2019

Extensions

More terms from Don Reble, May 02 2006

A324385 Distance from the n-th highly composite number, A002182(n), from the largest prime <= A002182(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 1, 7, 1, 1, 1, 1, 1, 1, 11, 17, 1, 1, 1, 13, 11, 11, 19, 17, 13, 1, 23, 1, 1, 13, 17, 17, 13, 17, 1, 17, 1, 1, 23, 17, 17, 17, 1, 19, 83, 37, 23, 17, 23, 1, 43, 19, 1, 19, 43, 19, 31, 23, 19, 31, 19, 19, 1, 1, 1, 1, 47, 1, 31, 47, 23, 53, 23, 83, 37, 31, 1, 31, 1, 23, 61, 1, 41, 47, 61, 41, 29, 41, 29, 43, 73, 29, 47, 31, 31
Offset: 2

Views

Author

Antti Karttunen, Feb 26 2019

Keywords

Comments

Like in A141345 it appears (or is conjectured) that no composite numbers ever occur here. Taken together, this leads to McEachen's conjecture given in A117825. Here in range 2..10000 term 1 occurs for 313 times.
The arithmetic mean of a(n)/log(A002182(n)) for the terms 3..10000 is 1.513, i.e., a rough approximation is given by a(n) ~ log(A002182(n)^(3/2)). - A.H.M. Smeets, Dec 02 2020

Examples

			A002182(2) = 2, the largest prime <= 2 is 2 itself, thus a(2) = 2-2 = 0.
A002182(7) = 36, the largest prime <= 36 is 31, thus a(7) = 36-31 = 5.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[DivisorSigma[0, #] &, 10^6]}, {0}~Join~Map[# - NextPrime[#, -1] &@ FirstPosition[s, #][[1]] &, Drop[Union@ FoldList[Max, s], 2]]] (* or *)
    {0}~Join~Map[# - NextPrime[#, -1] &, Import["https://oeis.org/A002182/b002182.txt", "Data"][[3 ;; 97, -1]] ] (* Michael De Vlieger, Dec 11 2020 *)
  • PARI
    A324385(n) = (A002182(n)-precprime(A002182(n)));

Formula

a(n) = A002182(n) - A007917(A002182(n)).

A329894 Terms of A025487 from which the distance to the next larger prime is a composite number.

Original entry on oeis.org

512, 16384, 373248, 393216, 524288, 1119744, 4194304, 4718592, 5971968, 8388608, 10077696, 10616832, 17915904, 21233664, 31104000, 33554432, 35831808, 42467328, 47775744, 56623104, 67108864, 150994944, 159252480, 286654464, 322486272, 362797056, 679477248, 859963392, 1528823808, 2176782336, 2890137600, 4294967296, 5804752896, 8748000000
Offset: 1

Views

Author

Antti Karttunen, Dec 24 2019

Keywords

Comments

From the first 795641 terms of A025487 (terms that are in range 1 .. 2^101) only 4238 (~ 0.5 %) are included in this sequence.

Examples

			As A151800(512) = 521, with 521 - 512 = 9 (a composite number), 512 is included in this sequence.
		

Crossrefs

Programs

  • PARI
    isc(n) = ((n > 1)&&!isprime(n));
    for(n=1,2000,if(isc(nextprime(1+A025487(n))-A025487(n)),print1(A025487(n),", ")));

A272817 Distance from n-th highly composite number (cf. A002182) to nearest prime or square.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 13, 1, 11, 1, 17, 1, 1, 13, 13, 1, 1, 17, 1, 17, 1, 1, 17, 17, 17, 1, 1, 19, 37, 37, 1, 1, 23, 1, 29, 1, 1, 19, 1, 19, 23, 1, 19, 31, 1, 19, 1, 1, 1, 1, 23, 1, 29, 23, 23, 1, 23, 71, 37
Offset: 1

Views

Author

Vladimir Shevelev, May 07 2016

Keywords

Comments

Conjecture: Terms are either 1 or prime, n>7. - Bill McEachen, Jun 11 2025

Crossrefs

Extensions

a(25)-a(77) from Giovanni Resta, May 07 2016

A339385 a(n) = (smallest prime >= A002182(n)) - (largest prime <= A002182(n)).

Original entry on oeis.org

0, 2, 2, 2, 6, 6, 6, 2, 14, 2, 2, 8, 8, 14, 18, 24, 18, 12, 2, 12, 14, 12, 30, 32, 18, 24, 2, 40, 2, 30, 26, 30, 18, 14, 34, 14, 40, 18, 20, 40, 34, 36, 18, 20, 42, 120, 90, 24, 34, 52, 44, 72, 20, 20, 38, 44, 42, 54, 24, 60, 72, 20, 72, 30, 20, 20, 24, 70
Offset: 2

Views

Author

A.H.M. Smeets, Dec 02 2020

Keywords

Comments

The prime gap size at the n-th highly composite number A002182(n), for n > 2.
The obtained arithmetic mean of the normalized gap size, i.e., a(n)/log(A002182(n)), for the terms 3..10000 is 3.030.
From Gauss's prime counting function approximation, the expected gap size should be approximately log(A002182), however, the observed values seem to be closer to log(A002182(n)^3).
The maximum merit (= a(n)/log(prevprime(A002182))) in the range 3..10000 is 12.96 and is obtained for n = 6911.

Crossrefs

Programs

  • Mathematica
    s = {}; dm = 1; Do[d = DivisorSigma[0, n]; If[d > dm, dm = d; AppendTo[s, NextPrime[n - 1] - NextPrime[n + 1, -1]]], {n, 2, 10^6}]; s (* Amiram Eldar, Dec 02 2020 *)
    {0}~Join~Map[Subtract @@ NextPrime[#, {1, -1}] &, Import["https://oeis.org/A002182/b002182.txt", "Data"][[3 ;; 10^3, -1]] ] (* Michael De Vlieger, Dec 10 2020 *)
  • PARI
    lista(nn) = my(r=1); forstep(n=2, nn, 2, if(numdiv(n)>r, r=numdiv(n); print1(nextprime(n) - precprime(n), ", "))); \\ Michel Marcus, Dec 03 2020

Formula

a(n) = A324385(n)+A141345(n), for n > 1.
Showing 1-5 of 5 results.