A141385 a(n) = 7*a(n-1) - 9*a(n-2) + a(n-3) with a(0)=3, a(1)=7, a(2)=31.
3, 7, 31, 157, 827, 4407, 23563, 126105, 675075, 3614143, 19349431, 103593805, 554625899, 2969386479, 15897666067, 85113810057, 455687062275, 2439682811479, 13061709929935, 69930511268509, 374397872321627
Offset: 0
Examples
a(0) = 3 = A^0 + B^0 + C^0, a(1) = 7 = A + B + C.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- G. P. Michon, Silent Prisms: A Screaming Game for Short-Sighted People.
- Index entries for linear recurrences with constant coefficients, signature (7,-9,1).
Programs
-
Magma
I:=[3,7,31]; [n le 3 select I[n] else 7*Self(n-1)-9*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 21 2012
-
Maple
m:=30; S:=series( (3-14*x+9*x^2)/(1-7*x+9*x^2-x^3), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 30 2021
-
Mathematica
LinearRecurrence[{7,-9,1},{3,7,31},40] (* Harvey P. Dale, May 25 2011 *) CoefficientList[Series[(3 -14x +9x^2)/(1 -7x +9x^2 -x^3), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 21 2012 *)
-
PARI
a(n)=([0,1,0; 0,0,1; 1,-9,7]^n*[3;7;31])[1,1] \\ Charles R Greathouse IV, Feb 10 2017
-
Sage
def A141385_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (3-14*x+9*x^2)/(1-7*x+9*x^2-x^3) ).list() A141385_list(40) # G. C. Greubel, Mar 30 2021
Formula
G.f.: (3 - 14*x + 9*x^2)/(1 - 7*x + 9*x^2 - x^3).
a(n+3) = 7*a(n+2) - 9*a(n+1) + a(n).
a(n) = A^n + B^n + C^n, where, putting u = atan(sqrt(5319)/73), we have:
A = 5.3538557854308282... = (7 + 2*sqrt(22)*cos(u/3))/3,
B = 1.5235479602692093... = (7 - sqrt(22)*cos(u/3) + sqrt(66)*sin(u/3))/3,
C = 0.1225962542999624... = (7 - sqrt(22)*cos(u/3) - sqrt(66)*sin(u/3))/3.
Extensions
New definition by Bruno Berselli, Oct 22 2012
Comments