A141412 Triangle c(n,k) of the denominators of coefficients [x^k] P(n,x) of the polynomials P(n,x) of A129891.
1, 2, 1, 3, 1, 1, 4, 12, 2, 1, 5, 6, 4, 1, 1, 6, 180, 8, 6, 2, 1, 7, 10, 15, 2, 6, 1, 1, 8, 560, 240, 240, 6, 4, 2, 1, 9, 1260, 15120, 20, 144, 1, 12, 1, 1, 10, 12600, 672, 945, 32, 240, 8, 3, 2, 1, 11, 1260, 8400, 1512, 3024, 48, 240, 3, 1, 1, 1, 12, 166320, 100800, 64800, 12096, 12096, 480, 360, 4, 12, 2, 1
Offset: 0
Examples
Triangle begins: 1; 2, 1; 3, 1, 1; 4, 12, 2, 1; 5, 6, 4, 1, 1; 6, 180, 8, 6, 2, 1; 7, 10, 15, 2, 6, 1, 1; ...
References
- Paul Curtz, Intégration .. note 12, C.C.S.A., Arcueil 1969, p. 61; ibid. pp. 62-65.
- P. Flajolet, X. Gourdon, and B. Salvy, Sur une famille de polynômes issus de l'analyse numérique, Gazette des Mathématiciens, 1993, 55, pp. 67-78.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Bakir Farhi, On the derivatives of the integer-valued polynomials, arXiv:1810.07560 [math.NT], 2018.
Programs
-
Magma
[Denominator(Factorial(k)*StirlingFirst(n, k)/Factorial(n)): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 24 2023
-
Maple
P := proc(n,x) option remember ; if n =0 then 1; else (-1)^n/(n+1)+x*add( (-1)^i/(i+1)*procname(n-1-i,x),i=0..n-1) ; expand(%) ; fi; end: A141412 := proc(n,k) p := P(n,x) ; denom(coeftayl(p,x=0,k)) ; end: seq(seq(A141412(n,k),k=0..n),n=0..13) ; # R. J. Mathar, Aug 24 2009
-
Mathematica
p[0]=1; p[n_]:= p[n]= (-1)^n/(n+1) +x*Sum[(-1)^k*p[n-1-k]/(k+1), {k, 0, n-1}]; Denominator[Flatten[Table[CoefficientList[p[n], x], {n,0,11}]]][[1 ;; 72]] (* Jean-François Alcover, Jun 17 2011 *) Table[Denominator[(k+1)!*StirlingS1[n+1,k+1]/(n+1)!], {n,0,12}, {k,0, n}]//Flatten (* G. C. Greubel, Oct 24 2023 *)
-
SageMath
def A141412(n,k): return denominator(factorial(k+1)* stirling_number1(n+1,k+1)/factorial(n+1)) flatten([[A141412(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 24 2023
Formula
Conjecture: T(n, k) = d(n+1, k+1), with d(n,k) = denominator(A000254(n, k)*k!/n!) where A000254 are the unsigned Stirling numbers of the 1st kind. See d(n,k) in Farhi link. - Michel Marcus, Oct 18 2018
Equals denominators of A048594(n+1, k+1)/(n+1)!. - G. C. Greubel, Oct 24 2023
Extensions
Partially edited by R. J. Mathar, Aug 24 2009
Comments