cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141412 Triangle c(n,k) of the denominators of coefficients [x^k] P(n,x) of the polynomials P(n,x) of A129891.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 12, 2, 1, 5, 6, 4, 1, 1, 6, 180, 8, 6, 2, 1, 7, 10, 15, 2, 6, 1, 1, 8, 560, 240, 240, 6, 4, 2, 1, 9, 1260, 15120, 20, 144, 1, 12, 1, 1, 10, 12600, 672, 945, 32, 240, 8, 3, 2, 1, 11, 1260, 8400, 1512, 3024, 48, 240, 3, 1, 1, 1, 12, 166320, 100800, 64800, 12096, 12096, 480, 360, 4, 12, 2, 1
Offset: 0

Views

Author

Paul Curtz, Aug 04 2008

Keywords

Comments

Polynomials are characteristic polynomials of a particular John Couch Adams matrix.
General term: ( (-1)^(n-j)*C(j, n)*n! ) * Integral_{0..i} (u*(u-1)*(u-2)* ... *(u-n))/(u-j)) du, with 1 <= i,j <= n (see Flajolet et al.).
Denominators are 1, 2, 12, 24, 720 = A091137.
These polynomials come from the explicit case. The less interesting implicit case has the same denominators (see P. Curtz reference).

Examples

			Triangle begins:
  1;
  2,   1;
  3,   1,  1;
  4,  12,  2,  1;
  5,   6,  4,  1,  1;
  6, 180,  8,  6,  2,  1;
  7,  10, 15,  2,  6,  1,  1;
  ...
		

References

  • Paul Curtz, Intégration .. note 12, C.C.S.A., Arcueil 1969, p. 61; ibid. pp. 62-65.
  • P. Flajolet, X. Gourdon, and B. Salvy, Sur une famille de polynômes issus de l'analyse numérique, Gazette des Mathématiciens, 1993, 55, pp. 67-78.

Crossrefs

Cf. A000254, A048594, A129891, A140749 (numerators).

Programs

  • Magma
    [Denominator(Factorial(k)*StirlingFirst(n, k)/Factorial(n)): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 24 2023
    
  • Maple
    P := proc(n,x) option remember ; if n =0 then 1; else (-1)^n/(n+1)+x*add( (-1)^i/(i+1)*procname(n-1-i,x),i=0..n-1) ; expand(%) ; fi; end:
    A141412 := proc(n,k) p := P(n,x) ; denom(coeftayl(p,x=0,k)) ; end: seq(seq(A141412(n,k),k=0..n),n=0..13) ; # R. J. Mathar, Aug 24 2009
  • Mathematica
    p[0]=1; p[n_]:= p[n]= (-1)^n/(n+1) +x*Sum[(-1)^k*p[n-1-k]/(k+1), {k, 0, n-1}];
    Denominator[Flatten[Table[CoefficientList[p[n], x], {n,0,11}]]][[1 ;; 72]] (* Jean-François Alcover, Jun 17 2011 *)
    Table[Denominator[(k+1)!*StirlingS1[n+1,k+1]/(n+1)!], {n,0,12}, {k,0, n}]//Flatten (* G. C. Greubel, Oct 24 2023 *)
  • SageMath
    def A141412(n,k): return denominator(factorial(k+1)* stirling_number1(n+1,k+1)/factorial(n+1))
    flatten([[A141412(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 24 2023

Formula

Conjecture: T(n, k) = d(n+1, k+1), with d(n,k) = denominator(A000254(n, k)*k!/n!) where A000254 are the unsigned Stirling numbers of the 1st kind. See d(n,k) in Farhi link. - Michel Marcus, Oct 18 2018
Equals denominators of A048594(n+1, k+1)/(n+1)!. - G. C. Greubel, Oct 24 2023

Extensions

Partially edited by R. J. Mathar, Aug 24 2009