cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141478 a(n) = binomial(n+2,3)*4^3.

Original entry on oeis.org

64, 256, 640, 1280, 2240, 3584, 5376, 7680, 10560, 14080, 18304, 23296, 29120, 35840, 43520, 52224, 62016, 72960, 85120, 98560, 113344, 129536, 147200, 166400, 187200, 209664, 233856, 259840, 287680, 317440, 349184, 382976, 418880, 456960, 497280, 539904, 584896
Offset: 1

Views

Author

Zerinvary Lajos, Aug 09 2008

Keywords

Crossrefs

Cf. A000292, A035008, A038231 (3rd subdiagonal), A210440.

Programs

  • Magma
    [Binomial(n+2,3)*4^3: n in [1..34]];  // Bruno Berselli, Apr 07 2011
    
  • Magma
    I:=[64, 256, 640, 1280]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 29 2012
  • Maple
    seq(binomial(n+2,3)*4^3, n=1..36);
  • Mathematica
    CoefficientList[Series[64/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 29 2012 *)

Formula

G.f.: 64*x/(1-x)^4.
a(n) = 32*n*(n+1)*(n+2)/3 = 64*A000292(n).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 29 2012
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=1} 1/a(n) = 3/128.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2)/16 - 15/128. (End)
From Elmo R. Oliveira, Aug 19 2025: (Start)
E.g.f.: 32*x*(6 + 6*x + x^2)*exp(x)/3.
a(n) = 16*A210440(n). (End)

Extensions

Offset adapted to the g.f. by Bruno Berselli, Apr 07 2011