cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141519 Period 10: repeat [-1, 1, -3, 7, -5, 3, -7, 9, -9, 5].

Original entry on oeis.org

-1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3
Offset: 0

Views

Author

Paul Curtz, Aug 11 2008

Keywords

Comments

It appears that abs(a(n)) = abs(A001469(n+1)) mod 10.
It also appears that abs(a(n)) = abs(A228767(n+4)) mod 10. - Michel Marcus, Sep 04 2013

Crossrefs

Programs

  • Mathematica
    PadRight[{},120,{-1,1,-3,7,-5,3,-7,9,-9,5}] (* Harvey P. Dale, Mar 03 2023 *)

Formula

G.f.: ( -1-3*x^2+4*x^3+2*x^5-5*x^6-5*x^8-x^4+4*x^7 ) / ( (1+x)*(1+x+x^2+x^3+x^4)*(x^4-x^3+x^2-x+1) ). - R. J. Mathar, Oct 08 2011
a(n) = - Sum_{k=1..9} a(n-k). - Wesley Ivan Hurt, May 27 2021