cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141546 Numbers whose abundance is 14.

Original entry on oeis.org

272, 7232, 30848, 516608, 134094848, 2146992128, 35184309174272
Offset: 1

Views

Author

Keywords

Comments

a(7) > 10^12. - Donovan Johnson, Dec 08 2011
a(7) > 10^13. - Giovanni Resta, Mar 29 2013
a(8) > 10^18. - Hiroaki Yamanouchi, Aug 23 2018
Any term x of this sequence can be combined with any term y of A141550 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016
Every number of the form 2^(j-1)*(2^j - 15), where 2^j - 15 is prime (see A059612), is a term. - Jon E. Schoenfield, Jun 02 2019

Examples

			a(1) = 272, since sigma(272) - 2*272 = 558 - 544 = 14. - _Timothy L. Tiffin_, Sep 13 2016
		

Crossrefs

Cf. A141550 (deficiency 14), A141545 (abundance 12), A141547 (abundance 16).

Programs

  • Magma
    [n: n in [1..10^8] | SumOfDivisors(n)- 2*n eq 14]; // Vincenzo Librandi, Mar 20 2015
  • Mathematica
    lst={};Do[If[n==Plus@@Divisors[n]-n-14,AppendTo[lst,n]],{n,10^4}];Print[lst];
    lst = {}; Do[ If[2 n + 14 == DivisorSigma[1, n], AppendTo[lst, n]], {n, 2 10^8, 2}]; lst (* Robert G. Wilson v, Aug 17 2008 *)
  • PARI
    isok(n) = sigma(n) - 2*n == 14; \\ Michel Marcus, Mar 20 2015
    

Formula

{k: A033880(k) = 14}. - R. J. Mathar, Jun 06 2024

Extensions

a(5)-a(6) from Donovan Johnson, Dec 21 2008
a(7) from Hiroaki Yamanouchi, Aug 23 2018