cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141547 Numbers n whose abundance is 16.

Original entry on oeis.org

550, 748, 1504, 7192, 7912, 10792, 17272, 30592, 1713592, 4526272, 8353792, 9928792, 11547352, 17999992, 89283592, 173482552, 361702144, 1081850752, 1845991216, 2146926592, 11097907192, 12985220152, 21818579968, 34357510144, 109170719992, 228354264064, 279632332792, 549746900992
Offset: 1

Views

Author

Keywords

Comments

Any term x of this sequence can be combined with any term y of A125248 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016
a(41) > 10^18 - Hiroaki Yamanouchi, Aug 23 2018

Examples

			a(1) = 550, since sigma(550) - 2*550 = 1116 - 1100 = 16. - _Timothy L. Tiffin_, Sep 13 2016
		

Crossrefs

Cf. A125248 (deficiency 16).

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq 16]; // Vincenzo Librandi, Sep 14 2016
    
  • Mathematica
    lst={}; Do[If[n==Plus@@Divisors[n]-n-16, AppendTo[lst,n]], {n,10^4}]; Print[lst];
    lst = {}; Do[ If[2 n + 16 == DivisorSigma[1, n], AppendTo[lst, n]], {n, 10^8}]; lst (* Robert G. Wilson v, Aug 17 2008 *)
    Select[Range[1, 10^8], DivisorSigma[1, #] - 2 # == 16 &] (* Vincenzo Librandi, Sep 14 2016 *)
  • PARI
    is(n)=sigma(n)==2*n+16 \\ Charles R Greathouse IV, Feb 21 2017

Extensions

a(9)-a(14) from Robert G. Wilson v, Aug 17 2008
a(15)-a(24) from Donovan Johnson, Dec 21 2008
a(25)-a(28) from Donovan Johnson, Dec 08 2011