cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A125248 Numbers n whose abundance sigma(n)-2n = -16. Numbers n whose deficiency is 16.

Original entry on oeis.org

17, 38, 92, 170, 248, 752, 988, 2528, 8648, 12008, 34688, 63248, 117808, 526688, 531968, 820808, 1292768, 1495688, 2095208, 2112512, 3477608, 4495808, 8419328, 12026888, 13192768, 16102808, 26347688, 29322008, 33653888, 169371008
Offset: 1

Views

Author

Jason G. Wurtzel, Nov 25 2006

Keywords

Comments

When p=2^k+15 is prime (cf. A057197), then 2^(k-1)*p is in this sequence. The terms { 17, 38, 92, 248, 752, 2528, 34688, 531968, 2112512, 8419328, 537116672, 2147975168, ...} are of this from, with k in {1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 15, 16, ...} = A057197. - M. F. Hasler, Jul 18 2016
Any term x of this sequence can be combined with any term y of A141547 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016

Examples

			The abundance of 38 = (1+2+19+38)-76 = -16
		

Crossrefs

Cf. A000203, A033880, A005100; A191363 (deficiency 2), A125246 (deficiency 4), A141548 (deficiency 6), A125247 (deficiency 8), A101223 (deficiency 10), A141549 (deficiency 12), A141550 (deficiency 14), A125248 (this), A223608 (deficiency 18), A223607 (deficiency 20); A141547 (abundance 16).

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -16]; // Vincenzo Librandi, Sep 14 2016
  • Mathematica
    Select[Range[1, 10^6], DivisorSigma[1, #] - 2 # == - 16 &] (* Vincenzo Librandi, Sep 14 2016 *)
  • PARI
    for(n=1,1000000,if(((sigma(n)-2*n)==-16),print1(n,",")))
    

Extensions

a(17) to a(30) from Klaus Brockhaus, Nov 29 2006

A175989 Numbers with abundance 32.

Original entry on oeis.org

572, 992, 7544, 10184, 28544, 83312, 113072, 122624, 382772, 507392, 537248, 698528, 791264, 1081568, 1279136, 2154584, 2279072, 5029184, 15126992, 29581424, 74899952, 89245784, 95327216, 307801856, 623799776, 712023296, 903230984, 1734487184, 9210347984
Offset: 1

Views

Author

R. J. Mathar, Nov 04 2010

Keywords

Comments

a(74) > 10^18. - Hiroaki Yamanouchi, Aug 23 2018

Crossrefs

Programs

Formula

{n: A033880(n) = 32}.

Extensions

Additional terms provided by Harvey P. Dale, Dec 10 2010
a(19)-a(29) from Donovan Johnson, Dec 08 2011

A275996 Numbers n whose abundance is 64: sigma(n) - 2n = 64.

Original entry on oeis.org

108, 220, 6808, 8968, 14008, 24448, 66928, 552568, 786208, 1020568, 5303488, 8229568, 10001848, 133685248, 499722448, 2608895488, 4733164768, 7163795488, 13707973408, 14468025568, 16122444736, 27339731968, 34351218688, 34672397728, 35371084288, 69657461248
Offset: 1

Views

Author

Timothy L. Tiffin, Aug 16 2016

Keywords

Comments

Any term x = a(m) of this sequence can be used with any term y of A275997 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable.
The smallest amicable pair is (220, 284) = (a(2), A275997(2)) = (A063990(1), A063990(2)), where 284 - 220 = 64 is the abundance of 220 and the deficiency of 284.
The amicable pair (66928, 66992) = (a(7), A275997(11)) = (A063990(18), A063990(19)), and 66992 - 66928 = 64 is the abundance of 66928 and the deficiency of 66992.

Examples

			a(1) = 108, since sigma(108) - 2*108 = 280 - 216 = 64.
		

Crossrefs

Programs

  • PARI
    isok(n) = sigma(n) - 2*n == 64; \\ Michel Marcus, Dec 30 2016

Extensions

a(14)-a(15) from Michel Marcus, Dec 30 2016
a(16)-a(21) from Lars Blomberg, Jan 12 2017
Terms a(22) onward from Max Alekseyev, Aug 27 2025

A141546 Numbers whose abundance is 14.

Original entry on oeis.org

272, 7232, 30848, 516608, 134094848, 2146992128, 35184309174272
Offset: 1

Views

Author

Keywords

Comments

a(7) > 10^12. - Donovan Johnson, Dec 08 2011
a(7) > 10^13. - Giovanni Resta, Mar 29 2013
a(8) > 10^18. - Hiroaki Yamanouchi, Aug 23 2018
Any term x of this sequence can be combined with any term y of A141550 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016
Every number of the form 2^(j-1)*(2^j - 15), where 2^j - 15 is prime (see A059612), is a term. - Jon E. Schoenfield, Jun 02 2019

Examples

			a(1) = 272, since sigma(272) - 2*272 = 558 - 544 = 14. - _Timothy L. Tiffin_, Sep 13 2016
		

Crossrefs

Cf. A141550 (deficiency 14), A141545 (abundance 12), A141547 (abundance 16).

Programs

  • Magma
    [n: n in [1..10^8] | SumOfDivisors(n)- 2*n eq 14]; // Vincenzo Librandi, Mar 20 2015
  • Mathematica
    lst={};Do[If[n==Plus@@Divisors[n]-n-14,AppendTo[lst,n]],{n,10^4}];Print[lst];
    lst = {}; Do[ If[2 n + 14 == DivisorSigma[1, n], AppendTo[lst, n]], {n, 2 10^8, 2}]; lst (* Robert G. Wilson v, Aug 17 2008 *)
  • PARI
    isok(n) = sigma(n) - 2*n == 14; \\ Michel Marcus, Mar 20 2015
    

Formula

{k: A033880(k) = 14}. - R. J. Mathar, Jun 06 2024

Extensions

a(5)-a(6) from Donovan Johnson, Dec 21 2008
a(7) from Hiroaki Yamanouchi, Aug 23 2018

A275997 Numbers k whose deficiency is 64: 2k - sigma(k) = 64.

Original entry on oeis.org

134, 284, 410, 632, 1292, 1628, 4064, 9752, 12224, 22712, 66992, 72944, 403988, 556544, 2161664, 2330528, 8517632, 13228352, 14563832, 15422912, 20732792, 89472632, 134733824, 150511232, 283551872, 537903104, 731670272, 915473696, 1846850576, 2149548032, 2159587616
Offset: 1

Views

Author

Timothy L. Tiffin, Aug 16 2016

Keywords

Comments

Any term x = a(m) in this sequence can be used with any term y in A275996 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable.
The smallest amicable pair is (220, 284) = (A275996(2), a(2)) = (A063990(1), A063990(2)), where 284 - 220 = 64 is the abundance of 220 and the deficiency of 284.
The amicable pair (66928, 66992) = (A275996(7), a(11)) = (A063990(18), A063990(19)), where 66992 - 66928 = 64 is the deficiency of 66992 and the abundance of 66928.
Contains numbers 2^(k-1)*(2^k + 63) whenever 2^k + 63 is prime. - Max Alekseyev, Aug 27 2025

Examples

			a(1) = 134, since 2*134 - sigma(134) = 268 - 204 = 64.
		

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A387352 (k=32).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64), A292626 (k=128).

Programs

  • Mathematica
    Select[Range[10^7], 2 # - DivisorSigma[1, #] == 64 &] (* Michael De Vlieger, Jan 10 2017 *)
  • PARI
    isok(n) = 2*n - sigma(n) == 64; \\ Michel Marcus, Dec 30 2016

Extensions

a(23)-a(31) from Jinyuan Wang, Mar 02 2020

A292626 Numbers k whose abundance is 128: sigma(k) - 2*k = 128.

Original entry on oeis.org

860, 5336, 6536, 9656, 16256, 55796, 70864, 98048, 361556, 776096, 2227616, 4145216, 4498136, 4632896, 8124416, 13086016, 34869056, 38546576, 150094976, 172960856, 196066256, 962085536, 1080008576, 1733780336, 1844788112, 2143256576, 2531343872, 2986104064, 9677743616, 11276687456, 17104503968, 20680182272, 21568135616
Offset: 1

Views

Author

Fabian Schneider, Sep 20 2017

Keywords

Crossrefs

Subsequence of A259174.
Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A387352 (k=32), A275997 (k=64).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64).

Programs

  • Mathematica
    fQ[n_] := DivisorSigma[1, n] == 2 n + 128; Select[ Range@ 10^8, fQ] (* Robert G. Wilson v, Nov 19 2017 *)
  • PARI
    isok(n) = sigma(n) - 2*n == 128; \\ Michel Marcus, Sep 20 2017

Extensions

a(9)-a(18) from Michel Marcus, Sep 20 2017
a(19)-a(24), a(26), a(29)-a(30), a(33) from Robert G. Wilson v, Nov 20 2017
Missing terms a(25), a(27)-a(28), a(31)-a(32) inserted and terms a(34) onward added by Max Alekseyev, Aug 30 2025

A292558 a(n) is the smallest number k such that sigma(k) - 2k = 2^n.

Original entry on oeis.org

20, 12, 56, 550, 572, 108, 860, 952, 1232, 6328, 3708, 40540, 37072, 79288, 327260, 357112, 302000, 527296, 1764056, 6506512, 38559776, 21893248, 42257216, 167771740, 90798560, 469761208, 508198064, 490304800, 1353048560, 2951488480, 5067417200, 32648918272, 40086360272
Offset: 1

Views

Author

XU Pingya, Sep 19 2017

Keywords

Comments

For n > 31, a(n) > 1.724 * 10^10.
a(1) = A088831(1), a(2) = A088832(1), a(3) = A088833(1), a(4) = A141547(1), a(5) = A175989(1), a(6) = A275996(1), a(7) = A292626(1). - Max Alekseyev, Aug 27 2025

Examples

			sigma(20) - 2*20 = 2^1, a(1) = 20.
sigma(108) - 2*108 = 64 = 2^6, a(6) = 108.
		

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[Log[2, DivisorSigma[1, k] - 2k] != n, k++]; k, {n, 30}]
  • PARI
    a(n) = my(k=1); while(sigma(k) - 2*k != 2^n, k++); k; \\ Michel Marcus, Sep 19 2017

Extensions

Terms a(32) onward from Max Alekseyev, Aug 27 2025

A385255 Numbers m whose deficiency is 24: sigma(m) - 2*m = -24.

Original entry on oeis.org

124, 9664, 151115727458150838697984
Offset: 1

Views

Author

Max Alekseyev, Jul 29 2025

Keywords

Comments

Contains numbers 2^(k-1)*(2^k + 23) for k in A057203. First three terms have this form.

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A275702 (k=26).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26).
Cf. A057203.

A387352 Numbers m with deficiency 32: sigma(m) - 2*m = -32.

Original entry on oeis.org

250, 376, 1276, 12616, 20536, 396916, 801376, 1297312, 8452096, 33721216, 40575616, 59376256, 89397016, 99523456, 101556016, 150441856, 173706136, 269096704, 283417216, 500101936, 1082640256, 1846506832, 15531546112, 34675557856, 136310177392, 136783784608
Offset: 1

Views

Author

Max Alekseyev, Aug 27 2025

Keywords

Comments

Contains numbers 2^(k-1)*(2^k + 31) for k in A247952.

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A275997 (k=64).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64), A292626 (k=128).
Cf. A247952.

A259174 Numbers whose abundance is a power of 2.

Original entry on oeis.org

12, 20, 56, 70, 88, 104, 108, 220, 368, 464, 550, 572, 650, 748, 836, 860, 952, 992, 1232, 1504, 1672, 1888, 1952, 2140, 2392, 2744, 3708, 4030, 5336, 5830, 6328, 6536, 6808, 7192, 7304, 7544, 7912, 8968, 9656, 9820, 10184, 10792, 11096, 13496, 14008
Offset: 1

Views

Author

Robert G. Wilson v, Jun 20 2015

Keywords

Comments

Subsequence of A005101 whose abundance is a term of A000079 except 1.
Below 35*10^8, only 236925 is odd and its abundance is 2^9.
Least terms with abundance 2^e for e = 1, 2, ... are listed in A292558.

Crossrefs

Contains as subsequences A088831, A088832, A088833, A141547, A175989, A275996, A292626.

Programs

  • Mathematica
    fQ[n_] := IntegerQ@ Log2[DivisorSigma[1, n] - 2 n]; Select[ Range@ 15000, fQ]
  • PARI
    isok(n) = isprimepower(sigma(n)-2*n, &p) && (p==2); \\ Michel Marcus, Mar 25 2017
Showing 1-10 of 12 results. Next