A141583 Squares of tribonacci numbers A000213.
1, 1, 1, 9, 25, 81, 289, 961, 3249, 11025, 37249, 126025, 426409, 1442401, 4879681, 16507969, 55845729, 188925025, 639128961, 2162157001, 7314525625, 24744863025, 83711270241, 283193201281, 958035736849, 3241011678961
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Ladder Graph
- Eric Weisstein's World of Mathematics, Total Dominating Set
- Index entries for linear recurrences with constant coefficients, signature (2,3,6,-1,0,-1).
Programs
-
Magma
I:=[1,1,1,9,25,81]; [n le 6 select I[n] else 2*Self(n-1) + 3*Self(n-2) + 6*Self(n-3) - Self(n-4) - Self(n-6): n in [1..30]]; // Vincenzo Librandi, Dec 13 2012
-
Mathematica
CoefficientList[Series[(1+x)^2*(1-3*x+x^2-x^3)/((1+x+x^2-x^3)*(1-3*x-x^2-x^3)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 13 2012 *) Table[RootSum[-1 - # - #^2 + #^3 &, 2 #^n - 4 #^(n + 1) + 3 #^(n + 2) &]^2/121, {n, 0, 20}] (* Eric W. Weisstein, Apr 10 2018 *) LinearRecurrence[{2,3,6,-1,0,-1}, {1,1,9,25,81,289}, {0, 20}] (* Eric W. Weisstein, Apr 10 2018 *) LinearRecurrence[{1,1,1},{1,1,1},40]^2 (* Harvey P. Dale, Aug 01 2021 *)
-
Sage
@CachedFunction def T(n): # A000213 if (n<3): return 1 else: return T(n-1) +T(n-2) +T(n-3) def A141583(n): return T(n)^2 [A141583(n) for n in (0..40)] # G. C. Greubel, Nov 22 2021
Formula
a(n) = (A000213(n))^2.
O.g.f.: (1+x)^2*(1-3*x+x^2-x^3)/((1+x+x^2-x^3)*(1-3*x-x^2-x^3)).
a(n) = 2*a(n-1) + 3*a(n-2) + 6*a(n-3) - a(n-4) - a(n-6).
Comments