A141596 Triangle T(n,k) = 4*binomial(n,k)^2 - 3, read by rows, 0<=k<=n.
1, 1, 1, 1, 13, 1, 1, 33, 33, 1, 1, 61, 141, 61, 1, 1, 97, 397, 397, 97, 1, 1, 141, 897, 1597, 897, 141, 1, 1, 193, 1761, 4897, 4897, 1761, 193, 1, 1, 253, 3133, 12541, 19597, 12541, 3133, 253, 1, 1, 321, 5181, 28221, 63501, 63501, 28221, 5181, 321, 1, 1, 397, 8097, 57597, 176397, 254013, 176397, 57597, 8097, 397, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 13, 1; 1, 33, 33, 1; 1, 61, 141, 61, 1; 1, 97, 397, 397, 97, 1; 1, 141, 897, 1597, 897, 141, 1; 1, 193, 1761, 4897, 4897, 1761, 193, 1; 1, 253, 3133, 12541, 19597, 12541, 3133, 253, 1; 1, 321, 5181, 28221, 63501, 63501, 28221, 5181, 321, 1; 1, 397, 8097, 57597, 176397, 254013, 176397, 57597, 8097, 397, 1;
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A109128.
Programs
-
Magma
A141596:= func< n,k | 4*Binomial(n,k)^2 - 3 >; [A141596(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 15 2024
-
Mathematica
Table[4*Binomial[n,k]^2-3,{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Dec 21 2016 *)
-
SageMath
def A141596(n,k): return 4*binomial(n,k)^2 -3 flatten([[A141596(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 15 2024
Formula
Sum_{k=0..n} T(n, k) = 4*binomial(2*n,n) - 3*(n+1) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = ((1 + (-1)^n)/2)*(4*(-1)^(n/2)*binomial(n, n/2) - 3) (alternating sign row sums). - G. C. Greubel, Sep 15 2024